0
Scientific Articles   |    
Commercial Extracellular Matrix Scaffolds for Rotator Cuff Tendon RepairBiomechanical, Biochemical, and Cellular Properties
Kathleen A. Derwin, PhD1; Andrew R. Baker, MS1; Rebecca K. Spragg, BS1; Diane R. Leigh, MS1; Joseph P. Iannotti, MD, PhD2
1 Department of Biomedical Engineering, ND-20, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195. E-mail address for K.A. Derwin: derwink@ccf.org
2 Department of Orthopaedic Surgery, A-41, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195
View Disclosures and Other Information
The authors did not receive grants or outside funding in support of their research for or preparation of this manuscript. They did not receive payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other charitable or nonprofit organization with which the authors are affiliated or associated.
Investigation performed at the Lerner Research Institute and Orthopaedic Research Center, The Cleveland Clinic Foundation, Cleveland, Ohio

The Journal of Bone and Joint Surgery, Incorporated
J Bone Joint Surg Am, 2006 Dec 01;88(12):2665-2672. doi: 10.2106/JBJS.E.01307
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Background: We are not aware of any in vitro study comparing the biomechanical, biochemical, and cellular properties of commercial extracellular matrix materials marketed for rotator cuff tendon repair. In this study, the properties of GraftJacket, TissueMend, Restore, and CuffPatch were quantified and compared with each other. The elastic moduli were also compared with that of normal canine infraspinatus tendon.

Methods: Samples were tested from different manufacturing lots of four materials: GraftJacket (ten lots), TissueMend (six), Restore (ten), and CuffPatch (six). The Kruskal-Wallis test was used to compare thickness, stiffness, and modulus as well as hydroxyproline, chondroitin/dermatan sulfate glycosaminoglycan, hyaluronan, and DNA contents among these matrices. The moduli of the extracellular matrices were also compared with those of normal canine infraspinatus tendon.

Results: All four extracellular matrices required 10% to 30% stretch before they began to carry substantial load. Their maximum moduli were realized in their linear region at 30% to 80% strain. The elastic moduli of all four commercial matrices were an order of magnitude lower than that of canine infraspinatus tendon. TissueMend had significantly higher DNA content than the other three matrices (p < 0.0001), although both Restore and GraftJacket also had measurable amounts of DNA.

Conclusions: Our data demonstrate chemical and mechanical differences among the four commercial extracellular matrices that we evaluated. Probably, the source (dermis or small intestine submucosa), species (human, porcine, or bovine), age of the donor (fetal or adult), and processing of these matrices all contribute to the unique biophysical properties of the delivered product. The biochemical composition of commercial extracellular matrices is similar to that of tendon. However, the elastic moduli of these materials are an order of magnitude lower than that of tendon, suggesting a limited mechanical role in augmentation of tendon repair.

Clinical Relevance: These data will help inform and guide the clinical community with regard to the appropriate use of commercially available extracellular matrix products for augmentation of rotator cuff tendon repair. Knowledge of the biophysical properties of these materials is fundamental to making an educated decision about whether a given matrix might provide mechanical augmentation and/or enhance the biology of tendon-to-bone healing.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    04/16/2014
    Georgia - Choice Care Occupational Medicine & Orthopaedics
    11/15/2013
    Louisiana - Ochsner Health System
    03/05/2014
    OK - The University of Oklahoma
    12/04/2013
    NY - Icahn School of Medicine at Mount Sinai