Scientific Articles   |    
Humoral Factors Enhance Fracture-Healing and Callus Formation in Patients with Traumatic Brain Injury
Dieter Cadosch, MD, PhD1; Oliver P. Gautschi, MD1; Matthew Thyer, PhD1; Swithin Song, MD2; Allan P. Skirving, MD2; Luis Filgueira, MD1; René Zellweger, MD2
1 School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia. E-mail address for D. Cadosch: dcadosch@anhb.uwa.edu.au
2 Departments of Diagnostic and Interventional Radiology (S.S.) and Orthopaedic and Trauma Surgery (A.P.S. and R.Z.), Royal Perth Hospital, Wellington Street, GPO Box X2213, Perth 6001, Western Australia, Australia
View Disclosures and Other Information
Disclosure: In support of their research for or preparation of this work, one or more of the authors received, in any one year, outside funding or grants in excess of $10,000 from SUVA Foundation (Swiss Workers Compensation Insurance). Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, division, center, clinical practice, or other charitable or nonprofit organization with which the authors, or a member of their immediate families, are affiliated or associated.
Investigation performed at Royal Perth Hospital, Perth, Western Australia, Australia

The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2009 Feb 01;91(2):282-288. doi: 10.2106/JBJS.G.01613
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Background: Scientific evidence is mounting for an association between traumatic brain injury and enhanced osteogenesis. The aim of this study was to correlate the in vitro osteoinductive potential of serum with the features of fracture-healing and the extent of brain damage in patients with severe traumatic brain injury and bone fracture.

Methods: Patients with a long-bone fracture and a traumatic brain injury (seventeen patients) or without a brain injury (twenty-four patients) were recruited. The Glasgow Coma Scale score was determined on admission. Radiographs of the fracture were made before surgery, at six weeks, and at three, six, and twelve months after surgery. The time to union was estimated clinically and radiographically, and the callus ratio to shaft diameter was calculated. Serum samples were collected at six, twenty-four, seventy-two, and 168 hours after injury, and their osteogenic potential was determined by measurement of the in vitro proliferation rate of the human fetal osteoblastic cell line hFOB1.19.

Results: Patients with a traumatic brain injury had a twofold shorter time to union (p = 0.01), a 37% to 50% increased callus ratio (p < 0.01), and their sera induced a higher proliferation rate in hFOB cells (p < 0.05). A linear relationship was revealed between hFOB cell proliferation rates and the amount of callus formed (p < 0.05). The Glasgow Coma Scale score was correlated with the callus ratio on both radiographic projections (p < 0.05), time to union (p = 0.04), and the proliferation rate of hFOB cells at six hours after injury (p = 0.03).

Conclusions: Patients with a severe brain injury release unknown humoral factors into the blood circulation that enhance and accelerate fracture-healing.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    NY - Modern Chiropractic Care, P.C.
    PA - Penn State Milton S. Hershey Medical Center
    CT - Yale University School of Medicine
    CA - UCLA/OH Department of Orthopaedic Surgery