0
Scientific Articles   |    
Effects of Disruption of Epiphyseal Vasculature on the Proximal Femoral Growth Plate
Harry K.W. Kim, MD, MSc, FRCSC1; Natalie Stephenson, BSc2; Amanda Garces2; James Aya-ay, MS2; Haikuo Bian, MD2
1 Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, TX 75219. E-mail address: harry.kim@tsrh.org
2 Shriners Hospitals for Children, 12502 Pine Drive, Tampa, FL 33612
View Disclosures and Other Information
Disclosure: In support of their research for or preparation of this work, one or more of the authors received, in any one year, outside funding or grants in excess of $10,000 from Shriners Hospitals for Children. Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, division, center, clinical practice, or other charitable or nonprofit organization with which the authors, or a member of their immediate families, are affiliated or associated.
Investigation performed at the Shriners Hospitals for Children, Tampa, Florida

The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2009 May 01;91(5):1149-1158. doi: 10.2106/JBJS.H.00654
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Background: Proximal femoral growth disturbance is a major complication associated with ischemic osteonecrotic conditions, such as Legg-Calvè-Perthes disease. The extent of ischemic damage and the mechanisms by which ischemic injury to the growing femoral head produces growth disturbance of the proximal femoral growth plate remain unclear. The purpose of this study was to investigate the effects of disruption of the epiphyseal vasculature on the morphology and function of the proximal femoral growth plate in a porcine model.

Methods: Ischemic osteonecrosis of the femoral head was surgically induced in sixty-five piglets by placing a ligature tightly around the femoral neck. Radiographic, histological, micro-computed tomographic, cellular viability, hypoxia marker, and cellular proliferation studies were performed.

Results: Disruption of the epiphyseal vasculature did not lead to diffuse growth plate damage in the majority of the ischemic femoral heads. One of the twelve femoral heads analyzed at four weeks and six of the twenty-six femoral heads analyzed at eight weeks had severe disruption of the growth plate that precluded histological assessment of the growth plate zones. In the remaining animals, the proximal part of the femur continued to elongate following induction of ischemia, albeit at a slower rate than on the normal side. Histologically, normal developmental thinning of the growth plate was seen to be absent on the ischemic side. Severe hypoxia and cellular death were limited to the area of the growth plate bordering on the infarcted osseous epiphysis. Normal chondrocytic organization and continued proliferation were observed in the proliferative zone of the growth plate.

Conclusions: In our porcine model, the proximal femoral growth plate was not diffusely damaged following disruption of the epiphyseal vasculature in the majority of the ischemic femoral heads. The majority of the growth plates remained viable and were able to function despite total disruption of the epiphyseal vasculature. These findings suggest that the source of nutrition for the proximal femoral growth plate is not solely the epiphyseal vasculature as has been traditionally believed.

Clinical Relevance: Longitudinal growth, albeit at a slower rate, may be expected from the majority of proximal femoral growth plates even when there is a total infarction of the osseous epiphysis.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    12/31/2013
    S. Carolina - Department of Orthopaedic Surgery Medical Univerity of South Carlonina
    02/28/2014
    District of Columbia (DC) - Children's National Medical Center
    04/02/2014
    W. Virginia - Charleston Area Medical Center
    12/04/2013
    New York - Icahn School of Medicine at Mount Sinai