Scientific Articles   |    
Effects of a Lubricin-Containing Compound on the Results of Flexor Tendon Repair in a Canine Model in Vivo
Chunfeng Zhao, MD1; Yu-Long Sun, PhD1; Ramona L. Kirk, BS1; Andrew R. Thoreson, MS1; Gregory D. Jay, MD, PhD2; Steven L. Moran, MD1; Kai-Nan An, PhD1; Peter C. Amadio, MD1
1 Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905. E-mail address for P.C. Amadio: pamadio@mayo.edu
2 Department of Emergency Medicine, Warren Alpert Medical School, Brown University, 1 Hopping Street, Providence, RI 02903
View Disclosures and Other Information
Disclosure: In support of their research for or preparation of this work, one or more of the authors received, in any one year, outside funding or grants in excess of $10,000 from the National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR44391). Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity.

Investigation performed at the Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, Minnesota

Copyright ©2010 American Society for Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2010 Jun 01;92(6):1453-1461. doi: 10.2106/JBJS.I.00765
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case



Tendon surface modification with a synthetic biopolymer, carbodiimide-derivatized hyaluronic acid and gelatin with the addition of lubricin (CHL), has been shown to reduce gliding resistance after tendon repair in an in vitro model. The purpose of the study was to investigate whether CHL would reduce adhesion formation and improve digital function after flexor tendon repair in a canine model in vivo.


Sixty dogs were randomly assigned to either a biopolymer-treated group (n = 30) or an untreated control group (n = 30). The second and fifth flexor digitorum profundus tendons from each dog were lacerated fully at the zone-II area and then repaired. Passive synergistic motion therapy was started on the fifth postoperative day and continued until the dogs were killed on day 10, day 21, or day 42. The repaired tendons were evaluated for adhesions, normalized work of flexion, gliding resistance, repair strength, stiffness, and histological characteristics.


The normalized work of flexion of the repaired tendons treated with CHL was significantly lower than that of the non-CHL-treated repaired tendons at all time points (p < 0.05), and the prevalence of severe adhesions was also significantly decreased in the CHL-treated tendons at day 42 (p < 0.05). However, the repair failure strength and stiffness of the CHL-treated group were also significantly reduced compared with those of the control group at days 21 and 42 (p < 0.05) and the rate of tendon rupture was significantly higher in the treated group than in the control group at day 42 (p < 0.05).


Treatment with the lubricin-containing gel CHL appears to be an effective means of decreasing postoperative flexor tendon adhesions, but it is also associated with some impairment of tendon healing. Future studies will be necessary to determine if the positive effects of CHL on adhesion formation can be maintained while reducing its adverse effect on the structural integrity of the repaired tendon.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    Illinois - Hinsdale Orthopaedics
    Connecticut - Yale University School of Medicine
    Oregon - The Center - Orthopedic and Neurosurgical Care and Research