Scientific Articles   |    
Influence of Limb Alignment on Mediolateral Loading in Total Knee ReplacementIn Vivo Measurements in Five Patients
Andreas Halder, MD, PhD1; Ines Kutzner2; Friedmar Graichen, PhD2; Bernd Heinlein, Prof.3; Alexander Beier, MD1; Georg Bergmann, Prof.2
1 Klinik für Endoprothetik, Sana Kliniken Sommerfeld, Waldhausstrasse 44, 16766 Sommerfeld, Germany. E-mail address for A. Halder: orthopaede@yahoo.de
2 Julius Wolff Institut, Charite Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
3 Biomechanical Engineering, ZHAW Zürich University of Applied Science, Technikumstrasse 9, 8400 Winterthur, Switzerland
View Disclosures and Other Information
  • Disclosure statement for author(s): PDF

Investigation performed at Klinik für Endoprothetik Sommerfeld, Sommerfeld, Germany

Disclosure: One or more of the authors received payments or services, either directly or indirectly (i.e., via his or her institution), from a third party in support of an aspect of this work. In addition, one or more of the authors, or his or her institution, has had a financial relationship, in the thirty-six months prior to submission of this work, with an entity in the biomedical arena that could be perceived to influence or have the potential to influence what is written in this work. No author has had any other relationships, or has engaged in any other activities, that could be perceived to influence or have the potential to influence what is written in this work. The complete Disclosures of Potential Conflicts of Interest submitted by authors are always provided with the online version of the article.

Copyright © 2012 by The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2012 Jun 06;94(11):1023-1029. doi: 10.2106/JBJS.K.00927
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case



Malalignment after total knee replacement could cause overloading of the implant bearing as well as of the bone itself, leading to osteolysis and early loosening. To quantify the stresses the implant has to withstand and to define a safe zone of limb alignment, the total contact forces as well as their mediolateral distribution have to be determined. Analytical gait data and mathematical models have been used for this purpose. We performed this study to determine in vivo loads of five patients after implantation of an instrumented tibial baseplate.


Five patients with osteoarthritis of the knee received total knee replacement. The tibial component was instrumented with strain gauges for the measurement of three forces and three moments. The signals from the gauges were transferred telemetrically to an external receiver. At twelve months after surgery, postoperative measurements were obtained with the patients walking at a self-selected comfortable speed across a level walkway. Peak axial and medial forces of fifteen to twenty gait cycles were averaged and reported as a percent of individual body weight.


During the stance phase of the gait cycle, two maxima of the axial force occurred. Typical values were 215% of body weight at the first peak and 266% of body weight at the second peak. The medial load share was typically 73% at the first axial force peak and 65% at the second axial force peak. Analysis of inter-individual variations revealed a linear correlation with limb alignment. A deviation of 1° varus from neutral alignment increased the medial load share by 5%.


Consistent with the results of previous studies, we found that the force transferred by the medial compartment was usually greater than that transferred by the lateral compartment. Concerning the design of total knee replacements, an asymmetric tibial component with a larger medial contact area could possibly reduce peak contact stress on the bone and improve fixation of the implant. Mediolateral load distribution was quantified and correlated with limb alignment, thereby permitting the effects of malalignment after total knee replacement to be estimated.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Related Audio and Videos
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    MA - Boston University Orthopedic Surgical Associates
    DC - Children's National Medical Center
    OK - The University of Oklahoma