Scientific Articles   |    
Bone Marrow Enhances the Performance of rhBMP-2 in Spinal FusionA Rodent Model
Hyun W. Bae, MD1; Li Zhao, MD, PhD1; Linda E.A. Kanim, MA1; Pamela Wong, MPH2; Deborah Marshall, BA1; Rick B. Delamarter, MD1
1 Tissue Engineering Laboratory (H.W.B., L.Z., L.E.A.K., and R.B.D.) and Biomechanics Laboratory (D.M.), Spine Center, Department of Surgery, Cedars-Sinai Medical Center, 444 South San Vicente Boulevard, Suite 901, Los Angeles, CA 90048
2 Spine Research Foundation, The Spine Institute, 2811 Wilshire Boulevard, Suite 850, Santa Monica, CA 90403
View Disclosures and Other Information
  • Disclosure statement for author(s): PDF

Investigation performed at the Division of Orthopaedic Surgery, Department of Surgery, Cedars-Sinai Spine Center, Los Angeles, California

Disclosure: None of the authors received payments or services, either directly or indirectly (i.e., via his or her institution), from a third party in support of any aspect of this work. One or more of the authors, or his or her institution, has had a financial relationship, in the thirty-six months prior to submission of this work, with an entity in the biomedical arena that could be perceived to influence or have the potential to influence what is written in this work. Also, one or more of the authors has had another relationship, or has engaged in another activity, that could be perceived to influence or have the potential to influence what is written in this work. The complete Disclosures of Potential Conflicts of Interest submitted by authors are always provided with the online version of the article.

Copyright © 2013 by The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2013 Feb 20;95(4):338-347. doi: 10.2106/JBJS.K.01118
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case



Reliable and rapid bone formation is the goal of biologics and cell-based spinal fusion technologies. While no cell-based therapy alone has been successful, recombinant human bone morphogenetic protein-2 (rhBMP-2) has been successfully used in a wide spectrum of patients undergoing a variety of spinal fusion procedures since its approval by the United States Food and Drug Administration (FDA) in 2002. However, the question remains how to improve the biologic efficiency, or osteoinductivity, of rhBMP-2 for successful application in the most challenging patients undergoing spinal fusion or to reduce the doses currently required. The present study investigated how varying the cellular environments through the addition of freshly harvested bone marrow aspirate (BMA) modulates rhBMP-2 efficiency.


An L4-L5 posterolateral intertransverse process spinal fusion procedure was performed in Lewis rats. The implants were a subeffective concentration of 0.006 mg/mL of rhBMP-2/two absorbable collagen sponges (ACS) plus directly applied fresh syngeneic BMA transplants (n = 18), 0.006-mg/mL rhBMP-2/two ACS/side (n = 12), 0.006-mg/mL rhBMP-2/one ACS/side (n = 12), or BMA/one ACS/side (n = 6). Rats were killed at eight weeks and were evaluated with use of manual palpation, radiographs, and biomechanical testing.


BMA plus 0.006-mg/mL rhBMP-2/ACS significantly increased the L4-L5 fusion rate to 89% (sixteen of eighteen) compared with a base fusion rate of 33% (four of twelve) to 50% (six of twelve) for rats implanted with rhBMP-2/ACS (p < 0.05), with no difference in strength or stiffness between conditions. No fusion or bone formation was observed in the six rats that received BMA/ACS alone.


Less rhBMP-2 was needed for effect when mixed with BMA. A nearly twofold increase in the fusion rate was found when BMA was mixed with a deliberate subeffective concentration of rhBMP-2. There was no improvement in terms of fusion strength or stiffness.

Clinical Relevance: 

Adjuvants such as BMA with rhBMP-2 may improve fusion success, allow marked dose reduction per segment in multilevel spinal surgery, result in cost savings, and/or decrease dose-related complications. This warrants further study prior to clinical implementation.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    S. Carolina - Department of Orthopaedic Surgery Medical Univerity of South Carlonina
    California - UCLA/OH Department of Orthopaedic Surgery
    Pennsylvania - Penn State Milton S. Hershey Medical Center
    Oklahoma - The University of Oklahoma