0
Scientific Articles   |    
The Osteoinductivity of Silicate-Substituted Calcium Phosphate
Melanie J. Coathup, BSc(Hon), PhD1; Sorousheh Samizadeh, BSc(Hon)1; Yvette S. Fang, BSc(Hon), PhD1; Thomas Buckland, MEng, PhD2; Karin A. Hing, BSc(Hon), PhD3; Gordon W. Blunn, BSc(Hon), PhD1
1 John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, University College London, The Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, United Kingdom. E-mail address for M.J. Coathup: m.coathup@ucl.ac.uk
2 ApaTech, Ltd., 370 Centennial Avenue, Centennial Park, Elstree, Herts WD6 3TJ, United Kingdom
3 IRC in Biomedical Materials, School of Engineering and Materials, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
View Disclosures and Other Information
Disclosure: One or more of the authors received payments or services, either directly or indirectly (i.e., via his or her institution), from a third party in support of an aspect of this work. In addition, one or more of the authors, or his or her institution, has had a financial relationship, in the thirty-six months prior to submission of this work, with an entity in the biomedical arena that could be perceived to influence or have the potential to influence what is written in this work. No author has had any other relationships, or has engaged in any other activities, that could be perceived to influence or have the potential to influence what is written in this work. The complete Disclosures of Potential Conflicts of Interest submitted by authors are always provided with the online version of the article.

  • Disclosure statement for author(s): PDF

Investigation performed at the John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Middlesex, United Kingdom

Copyright © 2011 by The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2011 Dec 07;93(23):2219-2226. doi: 10.2106/JBJS.I.01623
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Background: 

The osteoinductivity of silicate-substituted calcium phosphate and stoichiometric calcium phosphate was investigated with use of ectopic implantation. Implants with a macroporosity of 80% and a strut porosity of 30% were inserted into sites located in the left and right paraspinal muscles of six female sheep.

Methods: 

After twelve weeks in vivo, a longitudinal thin section was prepared through the center of each implant. Bone formation within the implant, bone formation in contact with the implant surface, and implant resorption were quantified with use of a line intersection method. The specimens were also analyzed with use of backscattered scanning electron microscopy and energy-dispersive x-ray analysis.

Results: 

Silicate substitution had a significant effect on the formation of bone both within the implant and on the implant surface during the twelve-week period. Bone area within the implant was greater in the silicate-substituted calcium phosphate group (mean, 7.65% ± 3.2%) than in the stoichiometric calcium phosphate group (0.99% ± 0.9%, p = 0.01). The amount of bone formed at the surface of the implant was also significantly greater in the silicate-substituted calcium phosphate group (mean, 26.00% ± 7.8%) than in the stoichiometric calcium phosphate group (2.2% ± 2.0%, p = 0.01). Scanning electron microscopy demonstrated bone formation within pores that were <5 μm in size, and energy-dispersive x-ray analysis confirmed the presence of silicon within the new bone in the silicate-substituted calcium phosphate group.

Conclusions: 

The formation of bone within muscle during the twelve-week period showed both silicate-substituted calcium phosphate and stoichiometric calcium phosphate to be osteoinductive in an ovine model. Silicate substitution significantly increased the amount of bone that formed and the amount of bone attached to the implant surface. New bone formation occurred through an intramembranous process within the implant structure.

Clinical Relevance: 

The use of a silicate-substituted calcium phosphate material instead of stoichiometric calcium phosphate ceramic during orthopaedic surgery may substantially augment repair and regeneration of bone.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    12/31/2013
    SC - Department of Orthopaedic Surgery Medical Univerity of South Carlonina
    11/15/2013
    LA - Ochsner Health System
    05/03/2012
    CA - UCLA/OH Department of Orthopaedic Surgery
    04/02/2014
    WV - Charleston Area Medical Center