0
Articles   |    
Optimizing tourniquet application and release times in extremity surgery. A biochemical and ultrastructural study
AA Sapega; RB Heppenstall; B Chance; YS Park; D Sokolow
J Bone Joint Surg Am, 1985 Feb 01;67(2):303-314
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Despite numerous studies investigating the pathophysiology of tourniquet ischemia, definitive data at the cellular level have been lacking and no consensus regarding safe tourniquet-application times in extremity surgery has emerged. In light of the particular vulnerability of skeletal muscle to ischemic injury, we determined the degree of muscular metabolic derangement and cell damage produced by seven different protocols of tourniquet application and release, each providing three hours of total tourniquet time. We performed thirty-six experiments on canine hind limbs, comparing the following time-patterns of tourniquet application: I--three sequential one-hour periods, II--two sequential one and one-half-hour periods, III--two hours followed by one hour, and IV--a single continuous three-hour application. Five and fifteen-minute reperfusion intervals between ischemic periods were compared for the first three time-patterns, creating a total of seven different tourniquet protocols. Muscular metabolic derangement and cell injury were evaluated by monitoring changes in the cellular bioenergetic state (high-energy phosphate profile), cell pH, post-ischemic leakage of creatine phosphokinase, and ultrastructural cell degeneration. At the intracellular level, the metabolic recovery of muscle during reperfusion was much faster than previous studies focusing on extracellular parameters have indicated. In all instances complete intracellular bioenergetic recovery occurred within five minutes after tourniquet release. The use of one or more five-minute reperfusion intervals significantly reduced the degree of ischemic cell injury, as indicated by a decrease in creatine phosphokinase leakage and myofibrillar destruction. No additional benefit was derived by extending the reperfusion periods to fifteen minutes. The longest period of continuous ischemia in each tourniquet-application protocol bore the closest relationship with the amount of cell damage produced. Within the spectrum of observed pathological changes, time-patterns I and II produced comparatively little muscle damage.

Figures in this Article
    This article is only available in the PDF format. Download the PDF to view the article, as well as its associated figures and tables.

    Topics

    limb ; tourniquets
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    03/05/2014
    OK - The University of Oklahoma
    04/22/2014
    NY - Columbia University Medical Ctr/Dept of Ortho.Surg
    03/05/2014
    OK - The University of Oklahoma
    01/22/2014
    PA - Penn State Milton S. Hershey Medical Center