0
Articles   |    
The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit
SW O'Driscoll; FW Keeley; RB Salter
J Bone Joint Surg Am, 1986 Sep 01;68(7):1017-1035
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

A rectangular graft of autogenous tibial periosteum was sutured (with its cambium layer facing into the joint) onto the base of a five by ten-millimeter full-thickness defect in the patellar groove of each of 143 adolescent and adult rabbits. The rabbits were managed postoperatively by either immobilization, intermittent active motion, continuous passive motion for two weeks, or continuous passive motion for four weeks. When the animals were killed four weeks postoperatively, the contour of the patellar groove had been restored in all of the rabbits in the group that had had four weeks of continuous passive motion, and the newly formed tissue in all of the defects in this group had the gross, histological, and histochemical appearance of smooth, intact hyaline articular cartilage. Histologically, the nature of the tissue that had formed, as well as its surface regularity, structural integrity, and bonding to the adjacent cartilage, were significantly better in the group that had had four weeks of continuous passive motion than in any of the other groups. The results were significantly worse when the orientation of the periosteal graft was reversed (that is, when it had been sutured into the defect with the cambium layer of the graft facing the subchondral bone rather than into the joint) or when no periosteal graft was used. Biochemical analyses revealed that, in the group that had had four weeks of continuous passive motion, the total hexosamine content, the levels of chondroitin sulphate and keratan sulphate, and the ratio of galactosamine to glucosamine were all comparable with the values for normal articular cartilage. In contrast, in the groups that were treated by immobilization, intermittent active motion, or two weeks of continuous passive motion, as well as in the adult rabbits, the content of the first three of these substances was significantly less than normal. In the groups that were treated by immobilization, intermittent active motion, or two weeks of continuous passive motion, 32 to 47 per cent of the total collagen was type II, while in the group that had had four weeks of continuous passive motion, 93 per cent of the total collagen was type II. These results demonstrate that, under the influence of continuous passive motion, free autogenous periosteal grafts can repair a large full-thickness defect in a joint surface by producing tissue that resembles articular cartilage grossly, histologically, and biochemically, and that contains predominantly type-II collagen.

Figures in this Article
    This article is only available in the PDF format. Download the PDF to view the article, as well as its associated figures and tables.
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    03/17/2014
    CT - Orthopaedic Foundation
    02/28/2014
    DC - Children's National Medical Center
    02/19/2014
    OH - University Hospitals Case Medical Center
    02/10/2014
    IL - The University of Chicago's Department of Orthopaedic Surgery and Rehabilitation Medicine