Articles   |    
Cell origin and differentiation in the repair of full-thickness defects of articular cartilage
F Shapiro; S Koide; MJ Glimcher
J Bone Joint Surg Am, 1993 Apr 01;75(4):532-553
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


The origin and differentiation of cells in the repair of three-millimeter-diameter, cylindrical, full-thickness drilled defects of articular cartilage were studied histologically in New Zealand White rabbits. The animals were allowed to move freely after the operation. Three hundred and sixty-four individual defects from 122 animals were examined as long as forty-eight weeks postoperatively. In the first few days, fibrinous arcades were established across the defect, from surface edge to surface edge, and this served to orient mesenchymal cell ingrowth along the long axes. The first evidence of synthesis of a cartilage extracellular matrix, as defined by safranin-O staining, appeared at ten days. At two weeks, cartilage was present immediately beneath the surface of collagenous tissue that was rich in flattened fibrocartilaginous cells in virtually all specimens. At three weeks, the sites of almost all of the defects had a well demarcated layer of cartilage containing chondrocytes. An essentially complete repopulation of the defects occurred at six, eight, ten, and twelve weeks, with progressive differentiation of cells to chondroblasts, chondrocytes, and osteoblasts and synthesis of cartilage and bone matrices in their appropriate locations. At twenty-four weeks, both the tidemark and the compact lamellar subchondral bone plate had been re-established. The cancellous woven bone that had formed initially in the depths of the defect was replaced by lamellar, coarse cancellous bone. Autoradiography after labeling with 3H-thymidine and 3H-cytidine demonstrated that chondrocytes from the residual adjacent articular cartilage did not participate in the repopulation of the defect. The repair was mediated wholly by the proliferation and differentiation of mesenchymal cells of the marrow. Intra-articular injections of 3H-thymidine seven days after the operation clearly labeled this mesenchymal cell pool. The label, initially taken up by undifferentiated mesenchymal cells, progressively appeared in fibroblasts, osteoblasts, articular chondroblasts, and chondrocytes, indicating their origin from the primitive mesenchymal cells of the marrow. Early traces of degeneration of the cartilage matrix were seen in many defects at twelve to twenty weeks, with the prevalence and intensity of the degeneration increasing at twenty-four, thirty-six, and forty-eight weeks. Polarized light microscopy demonstrated failure of the newly synthesized repair matrix to become adherent to, and integrated with, the cartilage immediately adjacent to the drill-hole, even when light microscopy had shown apparent continuity of the tissue. In many instances, a clear gap was seen between repair and residual cartilage.(ABSTRACT TRUNCATED AT 400 WORDS)

Figures in this Article
    This article is only available in the PDF format. Download the PDF to view the article, as well as its associated figures and tables.
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    LA - Louisiana State University Health Sciences Center-Shreveport
    IL - The University of Chicago's Department of Orthopaedic Surgery and Rehabilitation Medicine
    OK - The University of Oklahoma
    OH - OhioHealth Research and Innovation Institute (OHRI)