Articles   |    
The relationship between the design, position, and articular wear of acetabular components inserted without cement and the development of pelvic osteolysis
TP Schmalzried; D Guttmann; M Grecula; HC Amstutz
J Bone Joint Surg Am, 1994 May 01;76(5):677-688
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Between 1983 and 1987, an acetabular component with a unique chamfered-cylinder design was inserted without cement in 134 hips. With use of this design, initial stability is achieved through a cylindrical interference fit with the peripheral rim of the acetabulum, without the need for pegs, spikes, or screws. At an average of sixty-four months (range, forty to ninety-six months) after implantation, follow-up data were available for 113 hips (ninety-three patients). No component had been revised for loosening or was radiographically loose. However, the prevalence of balloon-like osteolysis of the pelvis was 17 per cent (nineteen hips). This bone loss was generally not associated with pain or other symptoms. Ten of the nineteen hips that were associated with pelvic osteolysis (including six of the nine that were associated with osteolysis of the ilium) had been reconstructed with use of an acetabular component that had no holes in the shell (that is, the shell was completely solid). This finding indicates that, while elimination of holes through the acetabular shell may have advantages, it will not prevent pelvic osteolysis. The osteolysis of the ilium was associated with a lateral opening of the acetabular component of more than 50 degrees (p < 0.0001). All of the hips in this series had insertion of a porous-ingrowth femoral resurfacing component made of titanium alloy. These components are no longer used. Revision of the femoral side due to osteolysis provided a unique opportunity to inspect directly forty-two clinically well functioning acetabular components. All of the polyethylene liners and acetabular shells were found to be rigidly fixed. Inflammatory tissue at the periphery of the implant-bone interface resulted in circumferential resorption of periacetabular bone despite rigid fixation of the component. This is direct evidence that a process of bone resorption similar to that reported at the cement-bone interface of cemented acetabular components can occur at the implant-bone interface of components inserted without cement. At the reoperation, a communication that had led to the pelvic osteolysis was found through areas of bone resorption at the periphery of the implant-bone interface. These areas were essentially cystic and were filled with a mixture of fluid and friable, yellow-tan tissue. It appeared that the osteolytic process had expanded into the soft cancellous bone and marrow while being contained by the denser cortical shell of the pelvic bones.(ABSTRACT TRUNCATED AT 250 WORDS)

Figures in this Article
    This article is only available in the PDF format. Download the PDF to view the article, as well as its associated figures and tables.
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    PA - Thomas Jefferson University
    LA - Ochsner Health System
    NY - Modern Chiropractic Care, P.C.
    OK - The University of Oklahoma