0
Articles   |    
The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects
SD Cook; GC Baffes; MW Wolfe; TK Sampath; DC Rueger; TS Whitecloud
J Bone Joint Surg Am, 1994 Jun 01;76(6):827-838
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

A rabbit ulnar non-union model was used to evaluate the effect of recombinant human osteogenic protein-1 on the healing of a large segmental osteoperiosteal defect. A 1.5-centimeter segmental defect was created in the mid-part of the ulnar shaft of adult rabbits. The defect was filled with an implant containing either recombinant human osteogenic protein-1 or naturally occurring bovine osteogenic protein. The recombinant human osteogenic protein-1 implants consisted of a carrier of 125 milligrams of demineralized, guanidine-extracted, insoluble rabbit bone matrix (the collagen carrier), reconstituted with 3.13, 6.25, 12.5, twenty-five, fifty, 100, 200, 300, or 400 micrograms of recombinant human osteogenic protein-1. Animals that received recombinant human osteogenic protein-1 were compared with animals that received an implant of 250 micrograms of a preparation of naturally occurring bovine osteogenic protein mixed with the collagen carrier. Limbs that served as controls received either the collagen carrier alone or no implant at all. The treated and the untreated defects were examined radiographically and histologically at eight or twelve weeks after implantation. Mechanical testing was performed on six animals. All implants of recombinant human osteogenic protein-1, except for those containing 3.13 micrograms of the substance, induced complete radiographic osseous union within eight weeks. The defects that were treated with an implant of bovine osteogenic protein also healed within this time-period. The bone induced by both types of implants had new cortices with advanced remodeling and marrow elements. Histological evaluation of this new bone at eight weeks postoperatively revealed primarily lamellar bone, with the formation of new cortices and normal-appearing marrow elements. The average torsional strength and energy-absorption capacity of the union induced by recombinant human osteogenic protein-1 was comparable with that of intact bone. The control defects that had been implanted with collagen carrier alone and those with no implant showed no bridging of the defect.

Figures in this Article
    This article is only available in the PDF format. Download the PDF to view the article, as well as its associated figures and tables.
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Related Audio and Videos
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    12/04/2013
    NY - Icahn School of Medicine at Mount Sinai
    04/02/2014
    LA - Louisiana State University Health Sciences Center-Shreveport
    04/02/2014
    WY - Memorial Hospital of Sweetwater County
    04/02/2014
    WV - Charleston Area Medical Center