Articles   |    
Mechanical consequences of bone ingrowth in a hip prosthesis inserted without cement
TM Keaveny; DL Bartel
J Bone Joint Surg Am, 1995 Jun 01;77(6):911-923
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Long-term biomechanical problems associated with the use of sintered porous coating on prosthetic femoral stems inserted without cement include proximal loss of bone and a risk of fatigue fracture of the prosthesis. We sought to identify groups of patients in whom these problems are accentuated and in whom the use of porous coating may thus jeopardize the success of the arthroplasty. We attempted to develop clinical guidelines for the use of sintered porous coating by investigating the long-term biomechanical effects of bone growth into partially (two-thirds) porous-coated anatomic medullary locking hip prostheses that fit well. More specifically, we used a detailed finite element analysis and a composite beam theory to determine the dependence of proximal loading of the bone and maximum stresses on the stem on the development of clinically observed patterns of bone ingrowth and the dependence of the risk of fatigue fracture of the stem on the diameter of the stem, the diameter of the periosteal bone, and the material from which the prosthesis was made. We found that bone ingrowth per se substantially reduced proximal loading of the bone. With typical bone ingrowth, axial and torsional loads acting on the proximal end of the bone were reduced aa much as twofold compared with when there was no ingrowth; bending loads on the proximal end of the bone were also reduced. The risk of fatigue fracture of the stem was insensitive to the development of bone ingrowth. However, the risk of fatigue fracture of the stem increased with decreased diameters of the stem and the periosteal bone and with increased modulus of the stem. The maximum risk of fracture was found in active patients in whom a cobalt-chromium-alloy stem with a small diameter had been implanted in a bone with a small diameter.

Figures in this Article
    This article is only available in the PDF format. Download the PDF to view the article, as well as its associated figures and tables.
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    Ohio - OhioHealth Research and Innovation Institute (OHRI)
    California - UCLA/OH Department of Orthopaedic Surgery