Articles   |    
Maturation of the Posterolateral Spinal Fusion and Its Effect on Load-Sharing of Spinal Instrumentation. An In Vivo Sheep Model*
View Disclosures and Other Information
Investigation performed at Scoliosis and Spine Center, Towson, and Orthopaedic Biomechanics Laboratory, The Union Memorial Hospital, Baltimore
J Bone Joint Surg Am, 1997 Nov 01;79(11):1710-20
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


We investigated the temporal relationship among the biomechanical, radiographic, and histological properties of a posterolateral spinal fusion mass to elucidate the changes in load-sharing of the spinal instrumentation and that of the fusion mass throughout the healing process. Destabilization of the posterior spinal column and transpedicular screw fixation at the segments between the third and fourth and the fifth and sixth lumbar vertebrae was performed in twenty-four sheep. A posterolateral spinal arthrodesis with use of autologous corticocancellous bone graft was done randomly at one of the two segments; the other segment (without bone graft) served as the instrumented control. Six animals each were killed at four, eight, twelve, and sixteen weeks postoperatively. Biomechanical testing showed that the posterolateral fusion mass had increased mechanical stiffness after the fourth week. The strain on the hardware, measured with use of rods instrumented with strain-gauges, decreased significantly (p < 0.01) beginning at eight weeks. Radiographically, three independent observations of each of the six animals at each time-period showed that, although all of the fusion masses were considered solid unions at sixteen weeks, bridging of trabecular bone was noted during only ten of eighteen observations at twelve weeks, three of eighteen observations at eight weeks, and none of eighteen observations at four weeks. Computerized tomography and histomorphometric analyses demonstrated that mineralization in the fusion mass increased in a linear fashion even after eight weeks. Histologically, the fusion mass consisted predominantly of woven bone at eight weeks; thereafter, it was gradually trabeculated.CLINICAL RELEVANCE: We found a great discrepancy between biomechanical stability and histological maturation of the posterolateral fusion mass. The biomechanical properties of a stable spinal fusion preceded the radiographic appearance of a solid fusion by at least eight weeks, suggesting that immature woven bone provided substantial stiffness to the fusion mass. The spinal instrumentation was subjected predominantly to bending stress rather than to axial stress, and the load-sharing of the spinal instrumentation decreased concurrently with the development of the spinal fusion.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    S. Carolina - Department of Orthopaedic Surgery Medical Univerity of South Carlonina
    California - UCLA/OH Department of Orthopaedic Surgery
    Louisiana - Ochsner Health System
    Pennsylvania - Penn State Milton S. Hershey Medical Center