0
Articles   |    
The Effect of Fibular Malreduction on Contact Pressures in an Ankle Fracture Malunion Model*
DAVID B. THORDARSON, M.D.†; SOHEL MOTAMED, B.S.‡; THOMAS HEDMAN, PH.D.†; EDWARD EBRAMZADEH, PH.D.§; SAM BAKSHIAN, M.D.#, LOS ANGELES, CALIFORNIA
View Disclosures and Other Information
Investigation performed at the Department of Orthopaedic Surgery, University of Southern California, Los Angeles
J Bone Joint Surg Am, 1997 Dec 01;79(12):1809-15
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Nine fresh-frozen cadaveric specimens were disarticulated through the knee, and the soft tissues, except for the interosseous ligaments and interosseous membrane, were removed to the level of the ankle. The subtalar joint was secured with screws in neutral position (approximately 5 degrees of valgus). Contact pressures in the tibiotalar joint were measured with use of low-grade pressure-sensitive film, which was placed through an anterior capsulotomy. For each measurement, 700 newtons of load was applied to the specimen for one minute. The film imprints were scanned, and the contact pressures were quantitated in nine equal quadrants over the talar dome. A fracture-displacement device was secured to the distal end of the fibula; the device allowed for individual or combined displacements consisting of shortening, lateral shift, and external rotation of the fibula. The ankle was maintained in neutral flexion. The ligamentous injury associated with a pronation-lateral rotation fracture of the ankle was simulated by dividing the deep fibers of the deltoid ligament, the anterior-inferior tibiofibular ligament, and the interosseous membrane to a point that was an average of fifty-three millimeters proximal to the ankle joint. Baseline contact area and contact pressure in the joint were determined, followed by measurements after two, four, and six millimeters of shortening of the fibula; after two, four, and six millimeters of lateral shift of the fibula; and after 5, 10, and 15 degrees of external rotation of the fibula. The three types of displacement were tested individually as well as in combination.The simulated deformities were found to cause a shift of the contact pressure to the mid-lateral and posterolateral quadrants of the talar dome, with pressures as high as 4.1 megapascals. A corresponding decrease in the contact pressures was noted in the medial quadrants of the talar dome. The highest pressures were recorded for maximum shortening of the fibula, the combination of maximum shortening and lateral shift, the combination of maximum shortening and external rotation, and the combination of maximum shortening, lateral shift, and external rotation. In general, increases in each displacement variable corresponded to increasing contact pressures.CLINICAL RELEVANCE: Previous biomechanical studies have demonstrated mixed results regarding the effect of lateral displacement of the talus on contact pressures in the ankle joint. We believe that we are the first to evaluate the individual and combined effects of shortening, lateral displacement, and malrotation of the fibula while load was applied through the tibial plateau—that is, while the tibia and fibula were loaded in a more physiological manner than accomplished previously. The findings of the present study confirm that substantial displacement of the fibula (two millimeters or more of shortening or lateral shift or 5 degrees or more of external rotation) increases the contact pressures in the ankle joint. Therefore, displacement of the fibula in these injuries should not be accepted.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    12/04/2013
    New York - Icahn School of Medicine at Mount Sinai
    04/16/2014
    Connecticut - Yale University School of Medicine
    04/02/2014
    W. Virginia - Charleston Area Medical Center