Articles   |    
The Effect of Implants Loaded with Autologous Mesenchymal Stem Cells on the Healing of Canine Segmental Bone Defects*
View Disclosures and Other Information
Investigation performed at Osiris Therapeutics, Baltimore, and Tufts University School of Veterinary Medicine, North Grafton
J Bone Joint Surg Am, 1998 Jul 01;80(7):985-96
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Bone marrow has been shown to contain a population of rare mesenchymal stem cells that are capable of forming bone, cartilage, and other connective tissues. We examined the effect of cultured autologous mesenchymal stem cells on the healing of critical-sized (twenty-one-millimeter-long) segmental defects in the femora of adult female dogs.Autologous mesenchymal stem cells were isolated from bone marrow, grown in culture, and loaded onto porous ceramic cylinders consisting of hydroxyapatite (65 per cent) and ß-tricalcium phosphate ceramic (35 per cent). The animals were randomly assigned to one of three groups. In Group A (six dogs), a porous ceramic cylinder that had been loaded with autologous mesenchymal stem cells was implanted in the defect. In Group B (six dogs), a ceramic cylinder that had not been loaded with cells was placed in the defect. In Group C (three dogs), the defect was left untreated (no ceramic cylinder was implanted). Radiographs were made immediately after the operation and at four-week intervals. At sixteen weeks, the animals were killed, the involved femora were removed, and undecalcified histological sections from the defects and adjacent bone were prepared. Histological and histomorphometric studies were carried out to examine the healing of the defects and the formation of bone in and around the ceramic implants.Atrophic non-union occurred in all of the femora that had untreated defects, and only a small amount of trabecular bone formed at the cut ends of the cortex of the host bone in this group. In contrast, radiographic union was established rapidly at the interface between the host bone and the implants that had been loaded with mesenchymal stem cells. Numerous fractures, which became more pronounced with time, developed in the implants that had not been loaded with cells. Histological and morphometric analyses demonstrated that both woven and lamellar bone had filled the pores of the implants that had been loaded with mesenchymal stem cells; the amount of bone was significantly greater (p < 0.05) than that found in the pores of the implants that had not been loaded with cells. In addition, a large collar of bone (mean maximum thickness, 3.14 millimeters) formed around the implants that had been loaded with cells; this collar became integrated and contiguous with callus that formed in the region of the periosteum of the host bone. The collar of bone remodeled during the sixteen-week period of study, resulting in a size and shape that were comparable with those of the segment of bone that had been resected. Callus did not develop around the cortex of the host bone or around the defect in any of the specimens in the other two groups.CLINICAL RELEVANCE: Autologous cultured bone-marrow-derived mesenchymal stem cells that had been loaded onto porous ceramic cylinders elicited the healing of critical-sized segmental bone defects in dogs. It may be possible to exploit this technology to elicit the healing of bone defects in humans by using cells from bone marrow that has been aspirated from the iliac crest of the patient. This approach may provide an alternative to autologous bone-grafting and may be particularly useful when the number of endogenous mesenchymal stem cells is relatively small.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    SC - Department of Orthopaedic Surgery Medical Univerity of South Carlonina
    PA - Penn State Milton S. Hershey Medical Center
    OH - University Hospitals Case Medical Center
    NY - Icahn School of Medicine at Mount Sinai