0
Articles   |    
Hamstring Tendon Grafts for Reconstruction of the Anterior Cruciate Ligament: Biomechanical Evaluation of the Use of Multiple Strands and Tensioning Techniques*
DYSON L. HAMNER, M.D.†; CHARLES H. BROWN, JR., M.D.‡; MARK E. STEINER, M.D.§; AARON T. HECKER, M.S.#; WILSON C. HAYES, PH.D.#, BOSTON, MASSACHUSETTS
View Disclosures and Other Information
Investigation performed at the Orthopaedic Biomechanics Laboratory, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston
J Bone Joint Surg Am, 1999 Apr 01;81(4):549-57
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Background: Our hypothesis that multiple, equally tensioned strands of hamstring graft used for reconstruction of the anterior cruciate ligament are stronger and stiffer than ten-millimeter patellar ligament grafts was tested biomechanically with use of tendons from cadavera.Methods: In the first part of the study, we measured the strength and stiffness of one, two, and four-strand hamstring grafts, from fresh-frozen cadaveric knees, that had been tensioned equally when clamped. In the second part of the study, we compared four-strand grafts to which tension had been applied by hand and then clamped with similar grafts to which tension had been applied with weights and then clamped. The grafts for the two experiments were obtained from thirty-four paired and ten unpaired knees. We also studied the effects of cooling on the biomechanical properties of grafts by comparing patellar ligament grafts tested at 13 degrees Celsius with those tested at room temperature.Results: Two equally tensioned gracilis strands had 185 percent of the strength and 210 percent of the stiffness (1550 ± 428 newtons and 336 ± 141 newtons per millimeter, respectively) of one gracilis strand (837 ± 138 newtons and 160 ± 44 newtons per millimeter, respectively). Two equally tensioned semitendinosus strands had 220 percent of the strength and 220 percent of the stiffness (2330 ± 452 newtons and 469 ± 185 newtons per millimeter, respectively) of one semitendinosus strand (1060 ± 227 newtons and 213 ± 44 newtons per millimeter, respectively).Four combined strands (two gracilis strands and two semitendinosus strands) that were equally tensioned with weights and clamped had the additive tensile properties of the individual strands. With the numbers available, four combined strands that were manually tensioned and clamped were not found to be significantly stronger or stiffer than two semitendinosus strands that were equally tensioned with weights (p > 0.07).Conclusions: Four combined strands that were equally tensioned with weights and clamped were stronger and stiffer than all ten-millimeter patellar ligament grafts that have been described in previous reports. All strands of a hamstring graft must be equally tensioned for the composite to have its optimum biomechanical properties.Clinical Relevance: Because of the well recognized donor-site morbidity associated with the use of patellar ligament grafts for reconstruction of the anterior cruciate ligament, multiple-strand hamstring-tendon grafts have become an increasingly popular choice. Our data demonstrate that equally tensioned four-strand hamstring-tendon grafts have initial tensile properties that are higher than those reported for ten-millimeter patellar-ligament grafts; thus, from a biomechanical point of view, they seem to be a reasonable alternative.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    04/16/2014
    Ohio - OhioHealth Research and Innovation Institute (OHRI)
    04/16/2014
    Georgia - Choice Care Occupational Medicine & Orthopaedics
    04/23/2014
    Massachusetts - UMass Memorial Medical Center
    02/05/2014
    Oregon - The Center - Orthopedic and Neurosurgical Care and Research