Articles   |    
Strains in the Metatarsals During the Stance Phase of Gait: Implications for Stress Fractures*
View Disclosures and Other Information
Investigation performed at Orthopaedic Research Laboratories, University of California, Davis, Sacramento
J Bone Joint Surg Am, 1999 Sep 01;81(9):1236-44
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Background: Stress fractures of the metatarsals are common overuse injuries in athletes and military cadets, yet their etiology remains unclear. In vitro, high bone strains have been associated with the accumulation of microdamage and shortened fatigue life. It is therefore postulated that stress fractures in vivo are caused by elevated strains, which lead to the accumulation of excessive damage. We used a cadaver model to test the hypothesis that strains in the metatarsals increase with simulated muscle fatigue and plantar fasciotomy.Methods: A dynamic gait simulator was used to load fifteen cadaveric feet during the entire stance phase of gait under conditions simulating normal walking, walking with fatigue of the auxiliary plantar flexors, and walking after a plantar fasciotomy. Strains were measured, with use of axial strain-gauges, in the dorsal, medial, and lateral aspects of the diaphysis of the second and fifth metatarsals as well as in the proximal metaphysis of the fifth metatarsal.Results: When the feet were loaded under normal walking conditions, the mean peak strain in the dorsal aspect of the second metatarsal (-1897 microstrain) was more than twice that in the medial aspect of the fifth metatarsal (-908 microstrain). Simulated muscle fatigue significantly increased peak strain in the second metatarsal and decreased peak strain in the fifth metatarsal. Release of the plantar fascia caused significant alterations in strain in both metatarsal bones; these alterations were greater than those caused by muscle fatigue. After the plantar fasciotomy, the mean peak strain in the dorsal aspect of the second metatarsal (-3797 microstrain) was twice that under normal walking conditions.Conclusions: The peak axial strain in the diaphysis of the second metatarsal is significantly (p < 0.0001) higher than that in the diaphysis of the fifth metatarsal during normal gait. The plantar fascia and the auxiliary plantar flexors are important for maintaining normal strains in the metatarsals during gait.Clinical Relevance: Higher strains in the diaphysis of the second metatarsal may explain why stress fractures are more common in this region than they are in the fifth metatarsal. Elevated strains in the metatarsals due to muscle fatigue or loss of function of the plantar fascia may contribute to the development of metatarsalgia and stress fractures.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    New York - Icahn School of Medicine at Mount Sinai
    S. Carolina - Department of Orthopaedic Surgery Medical Univerity of South Carlonina
    Connecticut - Yale University School of Medicine