Articles   |    
Effect of Sterilization Method and Other Modifications on the Wear Resistance of Acetabular Cups Made of Ultra-High Molecular Weight Polyethylene A Hip-Simulator Study*
Harry McKellop, Ph.D.†; Fu-wen Shen, Ph.D.†; Bin Lu, M.S.†; Patricia Campbell, Ph.D.†; Ronald Salovey, Ph.D.‡
View Disclosures and Other Information
Investigation performed at the J. Vernon Luck Orthopaedic Research Center and the Joint Replacement Institute, Los Angeles Orthopaedic Hospital, and the Departments of Orthopaedics, Biomedical Engineering, and Materials Science, University of Southern California, Los Angeles, California
*No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article. Funds were received in total or partial support of the research or clinical study presented in this article. The funding sources were the National Institutes of Health Grant 40996 and the Los Angeles Orthopaedic Hospital Foundation. Materials were donated by DePuy-DuPont Orthopaedics; Howmedica, Incorporated; Intermedics Orthopedics, Incorporated; Poly Hi Solidur, Incorporated; Spire Corporation; and Zimmer, Incorporated.
†The J. Vernon Luck Orthopaedic Research Center (H. McK., F.-W. S., and B. L.) and the Joint Replacement Institute (P. C.), Orthopaedic Hospital, 2400 South Flower Street, Los Angeles, California 90007. E-mail address for H. McKellop: hmckellop@laoh.ucla.edu.
‡Department of Materials Science, University of Southern California, University Park Campus, Los Angeles, California 90089.

J Bone Joint Surg Am, 2000 Dec 01;82(12):1708-1708
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Background: Wear of ultra-high molecular weight polyethylene acetabular cups in hip prostheses produces billions of submicrometer wear particles annually that can cause osteolysis and loosening of the components. Thus, substantial improvement of the wear resistance of ultra-high molecular weight polyethylene could extend the clinical life span of total hip prostheses. It has become apparent that the conditions under which ultra-high molecular weight polyethylene cups have been sterilized can markedly affect their long-term wear properties, and new sterilization methods and other modifications have been developed to minimize the negative effects.

Methods: In the present study, a hip-joint simulator was used to assess whether it is preferable to sterilize ultra-high molecular weight polyethylene cups without gamma irraSdiation, to avoid radiation-induced oxidative degradation, or to sterilize with gamma irradiation while the cups are packaged in a suitable low-oxygen atmosphere to minimize oxidation while retaining the increased wear resistance conferred by the radiation-induced cross-linking. Ion-implanted cups and cups made of a highly crystalline polyethylene (Hylamer) also were investigated. Cups made of each material were subjected to wear-testing prior to and after artificial thermal aging to accelerate oxidative degradation.

Results: The results of the present study demonstrated that the cross-linking induced by gamma irradiation improves the wear resistance of ultra-high molecular weight polyethylene, while oxidation reduces it. Without thermal aging, the two types of cups that were sterilized with gamma irradiation while in low-oxygen packaging exhibited about a 50 percent lower rate of wear than did either the nonsterilized cups or the nonirradiated cups sterilized with gas plasma. There was a comparable advantage in the rate of wear after fourteen days of thermal aging. However, after thirty days of aging, the cups sterilized with gamma irradiation in low-oxygen packaging wore several times faster than did the nonirradiated cups. Ion-implanting improved the wear resistance without thermal aging, but after extensive thermal aging the oxidation and wear were greater than those of the controls. Hylamer cups (that is, those that were sterilized with gas plasma) exhibited wear properties very close to those of the nonsterilized ultra-high molecular weight polyethylene cups (the controls) with or without aging.

Conclusions: Sterilizing an ultra-high molecular weight polyethylene acetabular cup without radiation (for example, with ethylene oxide or gas plasma) avoids immediate and long-term oxidative degradation of the implant but does not improve the inherent wear resistance of the polyethylene. Sterilizing with use of gamma irradiation with the implant packaged in a low-oxygen atmosphere avoids immediate oxidation and cross-links the polyethylene, thereby increasing its wear resistance, but long-term oxidation of the residual free radicals may markedly reduce the wear resistance. Ideally, cross-linking with gamma irradiation to reduce wear should be done in a manner that avoids both immediate and long-term oxidation.

Clinical Relevance: The present study demonstrated how the fabrication and sterilization processes influence the resistance to oxidation and wear of the various types of ultra-high molecular weight polyethylene that are currently available. As an exact quantitative relationship between days of thermal aging and years of real-time aging (on the shelf and/or in vivo) has not yet been established, it is not possible to predict precisely when, if ever, the in vivo wear rate of cups sterilized with gamma irradiation while in low-oxygen packaging would exceed that of nonirradiated cups. Nevertheless, the results of these wear tests with use of a hip simulator suggest that, for at least ten years of clinical use, the in vivo wear rate of cups sterilized with gamma irradiation while in low-oxygen packaging will be substantially lower than that of cups sterilized without irradiation. The fundamental interactions among radiation, cross-linking, and oxidation exhibited by the specific materials included in the present study may also apply to acetabular cups of other types of polyethylene. Understanding these fundamental interactions will assist the surgeon in making an informed choice among the materials examined in the present study and among other types of modified polyethylene already in clinical use, including those sterilized with ethylene oxide, those sterilized with gamma irradiation in other forms of low-oxygen packaging, and the various new cross-linked and thermally stabilized polyethylenes.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    California - Mercy Medical Group
    Pennsylvania - Penn State Milton S. Hershey Medical Center
    Ohio - OhioHealth Research and Innovation Institute (OHRI)