Articles   |    
Spontaneous Repair of Full-Thickness Defects of Articular Cartilage in a Goat Model A Preliminary Study
Douglas W. Jackson, MD; Peggy A. Lalor, PhD; Harold M. Aberman, DVM; Timothy M. Simon, PhD
View Disclosures and Other Information
Investigation performed at the Orthopaedic Research Institute, Southern California Center for Sports Medicine, Long Beach, California
Douglas W. Jackson, MD
Harold M. Aberman, DVM
Timothy M. Simon, PhD
Orthopaedic Research Institute, Southern California Center for Sports Medicine, 2760 Atlantic Avenue, Long Beach, CA 90806
Peggy A. Lalor, PhD
SkeleTech, 22002 26th Avenue S.E., Room 104, Bothell, WA 98021
Although none of the authors has received or will receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this article, benefits have been or will be directed to a research fund, foundation, educational institution, or other nonprofit organization with which one or more of the authors is associated. Funds were received in total or partial support of the research or clinical study presented in this article. The funding sources were the Douglas W. Jackson Orthopaedic Research Trust and an unrestricted research grant from Howmedica.

J Bone Joint Surg Am, 2001 Jan 01;83(1):53-53
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Background: Full-thickness defects measuring 3 mm in diameter have been commonly used in studies of rabbits to evaluate new procedures designed to improve the quality of articular cartilage repair. These defects initially heal spontaneously. However, little information is available on the characteristics of repair of larger defects. The objective of the present study was to define the characteristics of repair of 6-mm full-thickness osteochondral defects in the adult Spanish goat.

Methods: Full-thickness osteochondral defects measuring 6 ¥ 6 mm were created in the medial femoral condyle of the knee joint of adult female Spanish goats. The untreated defects were allowed to heal spontaneously. The knee joints were removed, and the defects were examined at ten time-intervals, ranging from time zero (immediately after creation of the defect) to one year postoperatively. The defects were examined grossly, microradiographically, histologically, and with magnetic resonance imaging and computed tomography.

Results: The 6-mm osteochondral defects did not heal. Moreover, heretofore undescribed progressive, deleterious changes occurred in the osseous walls of the defect and the articular cartilage surrounding the defect. These changes resulted in a progressive increase in the size of the defect, the formation of a large cavitary lesion, and the collapse of both the surrounding subchondral bone and the articular cartilage into the periphery of the defect. Resorption of the osseous walls of the defect was first noted by one week, and it was associated with extensive osteoclastic activity in the trabecular bone of the walls of the defect. Flattening and deformation of the articular cartilage at the edges of the defect was also observed at this time. By twelve weeks, bone resorption had transformed the surgically created defect into a larger cavitary lesion, and the articular cartilage and subchondral bone surrounding the defect had collapsed into the periphery of the defect. By twenty-six weeks, bone resorption had ceased and the osseous walls of the lesion had become sclerotic. The cavitary lesion did not become filled in with fibrocartilage. Instead, a cystic lesion was found in the center of most of the cavitary lesions. Only a thin layer of fibrocartilage was present on the sclerotic osseous walls of the defect. Specimens examined at one year postoperatively showed similar characteristics.

Conclusions: Full-thickness osteochondral defects, measuring 6 mm in both diameter and depth, that are created in the medial femoral condyle of the knee joint of adult Spanish goats do not heal spontaneously. Instead, they undergo progressive changes resulting in resorption of the osseous walls of the defect, the formation of a large cavitary lesion, and the collapse of the surrounding articular cartilage and subchondral bone.

Clinical Relevance: As surgeons apply new reparative procedures to larger areas of full-thickness articular cartilage loss, we believe that it is important to consider the potential deleterious effects of a "zone of influence" secondary to the creation of a large defect in the subchondral bone. When biologic and synthetic matrices with or without cells or bioactive factors are placed into surgically created osseous defects, the osseous walls serve as shoulders to protect and stabilize the preliminary repair process. It is important to protect the repair process until biologic incorporation occurs and the chondrogenic switch turns the cells on to synthesize an articular-cartilage-like matrix. It takes a varying period of time to fill a large, surgically created bone defect underlying a chondral surface. The repair of such a defect requires bone synthesis and the reestablishment of a subchondral plate with a tidemark transition to the new overlying articular surface. The prevention of secondary changes in the surrounding bone and articular cartilage and the durability of the new reparative tissue making up the articulating surface are issues that must be addressed in future studies.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    CA - Mercy Medical Group
    CA - UCLA/OH Department of Orthopaedic Surgery
    PA - Thomas Jefferson University
    SC - Department of Orthopaedic Surgery Medical Univerity of South Carlonina