0
Articles   |    
Histopathologic Changes in Growth-Plate Cartilage Following Ischemic Necrosis of the Capital Femoral Epiphysis An Experimental Investigation in Immature Pigs
Harry K.W. Kim, MD, FRCS(C); Phi-Huynh Su, BSc; Yu-Shan Qiu, MD
View Disclosures and Other Information
Investigation performed at the Center for Research in Skeletal Development and Pediatric Orthopaedics, Shriners Hospitals for Children, Tampa, Florida
Harry K.W. Kim, MD, FRCS(C) Phi-Huynh Su, BSc Yu-Shan Qiu, MD Shriners Hospitals for Children, 12502 North Pine Drive, Tampa, FL 33612. E-mail address for H.K.W. Kim: hkim@shrinenet.org. Please address requests for reprints to H.K.W. Kim.
No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article. Funds were received in total or partial support of the research or clinical study presented in this article. The funding source was Shriners Hospitals for Children.

J Bone Joint Surg Am, 2001 May 01;83(5):688-697
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Background: The developing capital femoral epiphysis consists of a secondary center of ossification surrounded by epiphyseal cartilage. Between the epiphyseal cartilage and the secondary center of ossification is a growth plate, which contributes to the circumferential increase in size of the secondary center of ossification during development. The main objective of this study was to describe the histopathologic changes that occur in the growth plate surrounding the secondary center of ossification during the early and reparative phases following the induction of ischemic necrosis of the capital femoral epiphysis in immature pigs.

Methods: Ischemic necrosis of the capital femoral epiphysis was induced in eighteen piglets by placing a nonabsorbable suture ligature around the femoral neck following a capsulotomy and transection of the ligamentum teres. The animals were killed three days to eight weeks following the induction of ischemia, and visual, radiographic, and histologic assessments were performed.

Results: Two to four weeks after the induction of ischemic necrosis, the growth plate surrounding the secondary center of ossification became necrotic. The observed histopathologic changes included chondrocyte death, loss of safranin-O staining of the matrix of the necrotic growth-plate cartilage, an absence of vascular invasion of terminal hypertrophic chondrocytes, and a decrease in the amount of primary spongiosa, indicating cessation of endochondral ossification. In the reparative phase, at four to eight weeks postoperatively, chondrocyte clusters and intense safranin-O staining were observed in the epiphyseal cartilage around the necrotic growth-plate cartilage. In the peripheral region of the femoral head, necrotic growth-plate cartilage surrounding the secondary center of ossification was resorbed by a fibrovascular tissue from the marrow space. By six weeks, new accessory centers of ossification with restored endochondral ossification were observed in the peripheral epiphyseal cartilage. New ossification centers contributed to the fragmented radiographic appearance of the secondary center of ossification. The physis appeared essentially normal in most animals, although five of the eighteen piglets showed mild or moderate histopathologic changes.

Conclusions: In this model, ischemic necrosis of the capital femoral epiphysis resulted in necrosis of the growth plate surrounding the secondary center of ossification. Small new ectopic centers of ossification appeared in the epiphyseal cartilage, explaining in part the fragmented radiographic appearance of the secondary center of ossification.

Clinical Relevance: This immature swine model may facilitate systematic study of the sequence of cellular and structural events that follow ischemic injury to the capital femoral epiphysis. Better understanding of the injury and repair processes that follow ischemia may lead to novel treatment strategies to stimulate the repair of the infarcted capital femoral epiphysis and to restore normal growth of the secondary center of ossification.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    01/22/2014
    PA - Penn State Milton S. Hershey Medical Center
    02/19/2014
    OH - University Hospitals Case Medical Center
    12/04/2013
    NY - Icahn School of Medicine at Mount Sinai
    12/31/2013
    SC - Department of Orthopaedic Surgery Medical Univerity of South Carlonina