Scientific Articles   |    
Prolonged Storage Effects on the Articular Cartilage of Fresh Human Osteochondral Allografts
Seth K. Williams, MD1; David Amiel, P1; Scott T. Ball, MD1; R. Todd Allen, MD, P1; Van W. Wong, BS1; Albert C. Chen, P1; Robert L. Sah, MD, ScD1; William D. Bugbee, MD1
1 Departments of Orthopaedics (S.K.W., D.A., S.T.B., R.T.A., and W.D.B.) and Bioengineering (V.W.W., A.C.C., and R.L.S.), University of California, San Diego, 9500 Gilman Drive, Department 630, La Jolla, CA 92093. E-mail address for D. Amiel: damiel@ucsd.edu
View Disclosures and Other Information
In support of their research or preparation of this manuscript, one or more of the authors received grants or outside funding from the University of California, San Diego Academic Senate, National Institutes of Health grant AG07996, and Allosource, Centennial, Colorado. None of the authors received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other charitable or nonprofit organization with which the authors are affiliated or associated.
Investigation performed at the Departments of Orthopaedics and Bioengineering, University of California, San Diego, La Jolla, California

The Journal of Bone and Joint Surgery, Incorporated
J Bone Joint Surg Am, 2003 Nov 01;85(11):2111-2120
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Background: Fresh osteochondral allograft transplantation is a well-established technique for the treatment of cartilage defects of the knee. It is believed that the basic paradigm of the technique is that the transplantation of viable chondrocytes maintains the articular cartilage matrix over time. Allograft tissue is typically transplanted up to forty-two days after the death of the donor, but it is unknown how the conditions and duration of storage affect the properties of fresh human osteochondral allografts. This study examined the quality of human allograft cartilage as a function of storage for a duration of one, seven, fourteen, and twenty-eight days. We hypothesized that chondrocyte viability, chondrocyte metabolic activity, and the biochemical and biomechanical properties of articular cartilage would remain unchanged after storage for twenty-eight days.

Methods: Sixty osteochondral plugs were harvested from ten fresh human femoral condyles within forty-eight hours after the death of the donor and were stored in culture medium at 4°C. At one, seven, fourteen, and twenty-eight days after harvest, the osteochondral plugs were analyzed for (1) viability and viable cell density by confocal microscopy, (2) proteoglycan synthesis by quantification of 35SO4 incorporation, (3) glycosaminoglycan content, (4) indentation stiffness, (5) compressive modulus and hydraulic permeability by static and dynamic compression testing, and (6) tensile modulus by equilibrium tensile testing.

Results: Chondrocyte viability and viable cell density remained unchanged after storage for seven and fourteen days (p > 0.7) and then declined at twenty-eight days (p < 0.001). Proteoglycan synthesis remained unchanged at seven days (p > 0.1) and then declined at fourteen days (p < 0.01) and twenty-eight days (p < 0.001). No significant differences were detected in glycosaminoglycan content (p > 0.8), indentation stiffness (p > 0.4), compressive modulus (p > 0.05), permeability (p > 0.3), or equilibrium tensile modulus after storage for twenty-eight days (p > 0.9).

Conclusions: These data demonstrate that fresh human osteochondral allograft tissue stored for more than fourteen days undergoes significant decreases in chondrocyte viability, viable cell density, and metabolic activity, with preservation of glycosaminoglycan content and biomechanical properties. The cartilage matrix is preserved during storage for twenty-eight days, but the chondrocytes necessary to maintain the matrix after transplantation decreased over that time-period.

Clinical Relevance: Fresh osteochondral allografting is well established and increasingly used, but little information is available about the changes in the tissue that occur during storage over a period of time. Surgeons who perform fresh osteochondral allograft transplantation should understand the consequences of prolonged storage on the quality of the graft.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    Pennsylvania - Penn State Milton S. Hershey Medical Center
    Ohio - OhioHealth Research and Innovation Institute (OHRI)