Scientific Article   |    
Thoracoscopic Intradiscal Spine Fusion Using a Minimally Invasive Gene-Therapy Technique
K. Daniel Riew, MD; Jueren Lou, MD; Neill M. Wright, MD; Su-Li Cheng, PhD; Kyongtae T. Bae, MD, PhD; Louis V. Avioli, MD
View Disclosures and Other Information
Investigation performed at the Department of Orthopaedic Surgery, Barnes-Jewish Hospitaland Washington University School of Medicine, St. Louis, Missouri

K. Daniel Riew, MD
Jueren Lou, MD
Neill M. Wright, MD
Su-Li Cheng, PhD
Kyongtae T. Bae, MD, PhD
Louis V. Avioli, MD
Department of Orthopaedic Surgery (K.D.R. and J.L.), Department of Neurological Surgery (N.M.W.), Division of Bone and Mineral Diseases, Department of Internal Medicine (S.-L.C. and L.V.A.), and Mallinckrodt Institute of Radiology (K.T.B.), Barnes-Jewish Hospital and Washington University School of Medicine, Suite 11300, One Barnes-Jewish Hospital Plaza Drive, St. Louis, MO 63110. E-mail address for K.D. Riew: riewd@msnotes.wustl.edu

The authors did not receive grants or outside funding in support of their research or preparation of this manuscript. They did not receive payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other charitable or nonprofit organization with which the authors are affiliated or associated.

J Bone Joint Surg Am, 2003 May 01;85(5):866-871
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Background: Gene therapy has been utilized to achieve posterior intertransverse process fusion in rodents. To our knowledge, however, no one has previously reported on the use of this technique to achieve anterior spinal fusion in mammals. The purpose of the present study was to determine if a gene-therapy technique can be utilized to achieve anterior intradiscal fusion in pigs with use of minimally invasive techniques.

Methods: Mesenchymal stem cells were isolated from each of three pigs, expanded in culture, and transduced with an adenovirus carrying either the gene for bone morphogenetic protein-2 (Adv-BMP2) or the control gene, ß-galactosidase (Adv-ßgal). In vitro, assays were performed to detect BMP-2 expression as well as protein markers of bone formation. In vivo, four thoracic disc spaces in each of three pigs were injected thoracoscopically with cells after 1 cm 3 of the disc had been removed. In each of the three pigs, two discs were injected with autologous mesenchymal stem cells transduced with Adv-BMP2, the third disc was injected with cells transduced with Adv-ßgal (control 1), and the fourth disc served as the sham-operated control (control 2). The three animals were killed six weeks after the implantation. Computerized tomographic scanning was performed on two of the specimens, and histological examination was performed on all specimens. The computerized tomographic scans and histological examinations were then interpreted in a blinded fashion.

Results: In the in vitro study, a human BMP-2 protein band was detected in the medium of Adv-BMP2-transduced stem cells but not in that of the control cells. The Adv-BMP2-transduced stem cells were associated with a fivefold increase in alkaline phosphatase activity compared with the controls as well as with matrix mineralization and increased protein expression of type-I collagen, osteopontin, and bone sialoprotein. In the in vivo study, radiographic examination demonstrated anterior spinal fusion in all six disc spaces that had been treated with implantation of Adv-BMP2-transduced stem cells. In contrast, the six control disc spaces had little or no intervening bone. Histological examination demonstrated bridging bone from end plate to end plate in all six disc spaces that had been treated with implantation of Adv-BMP2-transduced stem cells. The six control disc spaces had no bridging bone.

Conclusion: The Adv-BMP2-transduced mesenchymal stem cells produced BMP-2 protein. Further, the cells differentiated into osteoblasts and induced anterior spinal fusion in six of six disc spaces in this pig model. Although many technical and practical challenges remain, the results of the present study suggest that it may eventually be possible to use similar techniques to achieve anterior spinal fusion in humans.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    OH - University Hospitals Case Medical Center
    OH - OhioHealth Research and Innovation Institute (OHRI)
    SC - Department of Orthopaedic Surgery Medical Univerity of South Carlonina
    MA - Boston University Orthopedic Surgical Associates