0
Scientific Articles   |    
Backside Wear of Modular Ultra-High Molecular Weight Polyethylene Tibial Inserts
Michael A. Conditt, PhD1; Sabir K. Ismaily, BS1; Jerry W. Alexander, BS1; Philip C. Noble, PhD2
1 Institute of Orthopedic Research and Education, 6550 Fannin Street, Suite 2512, Houston, TX 77030. E-mail address for M.A. Conditt: mconditt@bcm.tmc.edu
2 Barnhart Department of Orthopedic Surgery, Baylor College of Medicine, 6550 Fannin Street, Suite 2625, Houston, TX 77030
View Disclosures and Other Information
The authors did not receive grants or outside funding in support of their research or preparation of this manuscript. They did not receive payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other charitable or nonprofit organization with which the authors are affiliated or associated.
Investigation performed at the Institute of Orthopedic Research and Education, Houston, Texas

The Journal of Bone and Joint Surgery, Incorporated
J Bone Joint Surg Am, 2004 May 01;86(5):1031-1037
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Background: The capture mechanisms of modular tibial total knee components may allow relative micromotion between the insert and the base-plate, leading to wear at the nonarticulating (backside) surface. Although retrieved components often display laxity in the capture mechanism in the unloaded condition, the magnitude of the relative motion that actually occurs under physiologic conditions has not been determined. This study was performed to assess the impact of different modes of knee-loading on the relative micromotion between the insert and the base-plate and the relationship between the duration that the implant had been in situ and the severity of backside wear.

Methods: Twenty-one posterior-stabilized total knee replacements of one common design (Insall-Burstein II) were retrieved at one to 100 months after implantation. The extent and severity of backside wear was graded with use of stereomicroscopy. All components were soaked in a bath (of physiologic saline solution at 37°C for four days prior to reassembly. The relative micromotion between the insert and the base-plate of each specimen was measured in vitro in two different conditions: with no axial load and with a combination of loads and torques simulating the stance phase of gait.

Results: The capture mechanism laxity between the insert and the tibial base-plate in the unloaded condition was approximately eight times larger than the micromotion measured during simulated gait. The capture mechanism laxity allowed a mean (and standard deviation) of 618 ± 226 µm of total relative micromotion compared with 103 ± 54 µm of relative micromotion during the gait cycle. Under both loading conditions, the predominant direction of interface motion was medial-lateral. No correlation was found between the magnitude of capture mechanism laxity and the relative micromotion measured during simulated gait (p = 0.11). Larger polyethylene protrusions on the backside surface did not correlate with less micromotion (p = 0.48) or with capture mechanism laxity (p = 0.06).

Conclusions: For the implant design that was studied, capture mechanism laxity between the modular insert and the base-plate in the unloaded condition was an order of magnitude larger than and not indicative of the micromotion that occurred during simulated physiologic loading. In addition, polyethylene protrusions into the screw-holes of tibial base-plates did not seat or lock the insert in place and reduce relative motion.

Clinical Relevance: While some clearance between the insert and the base-plate is required to allow assembly of modular tibial components at the time of surgery, the amount of relative interface motion during a functional activity such as normal gait, which can produce potentially damaging wear debris, is unknown. However, the compressive forces applied to the articular surface during a functional activity may substantially reduce micromotion between the insert and the base-plate relative to the unloaded condition.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Alumina versus polyethylene in total knee arthroplasty. Clin Orthop Relat Res 1992;(282):95-104.
    Guidelines
    Results provided by:
    PubMed
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    01/08/2014
    Pennsylvania - Penn State Milton S. Hershey Medical Center
    03/19/2014
    Massachusetts - The University of Massachusetts Medical School
    03/19/2014
    Virginia - VIRGINIA COMMONWEALTH UNIVERSITY MEDICAL CENTER
    02/05/2014
    Oregon - The Center - Orthopedic and Neurosurgical Care and Research