0
Scientific Articles   |    
Biomechanical Evaluation of Arthroscopic Rotator Cuff Stitches
C. Benjamin Ma, MD1; John D. MacGillivray, MD2; Jonathan Clabeaux, MD2; Samuel Lee, MSc2; James C. Otis, PhD2
1 Department of Orthopaedic Surgery, University of California, San Francisco, 500 Parnassus Avenue, MU320W, San Francisco, CA 94143. E-mail address: maben@orthosurg.ucsf.edu
2 The Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
View Disclosures and Other Information
The authors did not receive grants or outside funding in support of their research or preparation of this manuscript. They did not receive payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other charitable or nonprofit organization with which the authors are affiliated or associated.
Investigation performed at The Hospital for Special Surgery, New York, NY

The Journal of Bone and Joint Surgery, Incorporated
J Bone Joint Surg Am, 2004 Jun 01;86(6):1211-1216
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Background: The suture configurations in arthroscopic rotator cuff repairs have been limited to simple and horizontal stitches. Recent objective evaluations have demonstrated high failure rates of arthroscopic repairs of rotator cuff tears. A novel stitch for arthroscopic repair of the rotator cuff, the massive cuff stitch, was developed to increase the strength of the suture-tendon interface. The goal of this study was to determine the biomechanical properties of the massive cuff stitch and to compare it with other stitches commonly used for rotator cuff repair.

Methods: Eight pairs of sheep infraspinatus tendons were harvested and split in half to yield a set of four tendon specimens from each animal. Four stitch configurations (simple, horizontal, massive cuff, and modified Mason-Allen) were randomized and biomechanically tested in each set of tendon specimens. Each specimen was first cyclically loaded on an MTS uniaxial load frame under force control from 5 to 30 N at 0.25 Hz for twenty cycles. Each specimen was then loaded to failure under displacement control at a rate of 1 mm/sec. Cyclic elongation, peak-to-peak displacement, ultimate tensile load, and stiffness were measured with use of an optical motion analysis system and load-cell output. The type of failure (suture breakage or pull-out) was also recorded. A repeated-measures analysis of variance was performed on the results, with the alpha level of significance set at p < 0.05.

Results: There was no difference in cyclic elongation or peak-to-peak displacement among the four stitches. Ultimate tensile load was significantly higher (p < 0.05) for the massive cuff stitch (233 ± 40 N) and the modified Mason-Allen stitch (246 ± 40 N) than it was for either the simple stitch (72 ± 18 N) or the horizontal stitch (77 ± 15 N). There was no significant difference in the ultimate load between the massive cuff and modified Mason-Allen stitches. There was also no difference in stiffness among the four stitches. The simple and horizontal stitches failed by tissue pull-out, whereas the massive cuff and Mason-Allen stitches failed by a mixture of suture breakage and pull-out.

Conclusions: The massive cuff stitch provides strength comparable with that of the modified Mason-Allen stitch commonly used in open rotator cuff repair. The ultimate tensile load before failure of the massive cuff stitch was significantly higher (p < 0.05) than that of the simple and horizontal stitches.

Clinical Relevance: The massive cuff stitch may be a promising alternative for arthroscopic repairs of rotator cuff tendons.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    01/22/2014
    PA - Penn State Milton S. Hershey Medical Center
    12/04/2013
    NY - Icahn School of Medicine at Mount Sinai
    03/19/2014
    VA - OrthoVirginia
    03/19/2014
    MA - The University of Massachusetts Medical School