Scientific Articles   |    
Predicting Fracture Through Benign Skeletal Lesions with Quantitative Computed Tomography
Brian D. Snyder, MD, PhD1; Diana A. Hauser-Kara, PhD2; John A. Hipp, PhD3; David Zurakowski, PhD1; Andrew C. Hecht, MD2; Mark C. Gebhardt, MD1
1 Departments of Orthopaedic Surgery (B.D.S., D.Z., and M.C.G.) and Biostatistics (D.Z.), Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115. E-mail address for B.D. Snyder: brian.snyder@childrens.harvard.edu
2 Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
3 Spine Research Laboratory, Baylor College of Medicine, 6620 Main Street, Houston, TX 77030
View Disclosures and Other Information
A commentary is available with the electronic versions of this article, on our web site (www.jbjs.org) and on our quarterly CD-ROM (call our subscription department, at 781-449-9780, to order the CD-ROM).
In support of their research for preparation of this manuscript, one or more of the authors received grants or outside funding from the Whitaker Foundation, Rosslyn, Virginia, and National Cancer Institute Extramural Activities Grant EPN/636 2 RO1 CA40211-13. None of the authors received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other charitable or nonprofit organization with which the authors are affiliated or associated.
Investigation performed at Children's Hospital and the Orthopaedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center, Boston, Massachusetts

The Journal of Bone and Joint Surgery, Incorporated
J Bone Joint Surg Am, 2006 Jan 01;88(1):55-70. doi: 10.2106/JBJS.D.02600
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Background: There are no proven radiographic guidelines for predicting fracture risk in children and young adults with a benign skeletal lesion. An in vivo diagnostic study was conducted to determine whether a reduction in the load-carrying capacity of a bone measured with quantitative computed tomography was more accurate than current radiographic guidelines for predicting pathologic fracture in patients with a benign skeletal lesion.

Methods: Eighteen patients who presented with a fracture through a benign skeletal lesion were compared with eighteen patients who had a benign skeletal lesion that had been thought to be at increased risk for fracture on the basis of currently used radiographic criteria but had not fractured over a two-year period. Structural analysis was performed to calculate the resistance of the affected bones to compressive, bending, and torsional loads with use of serial transaxial quantitative computed tomography data obtained along the length of the bone containing the lesion and from homologous cross sections through the contralateral, normal bone. At each cross section, the ratio of the structural rigidity of the affected bone divided by that of the normal, contralateral bone was determined. The cross section with the greatest reduction in compressive, bending, and torsional rigidity was identified as that most likely to fracture.

Results: The mean age (and standard deviation) of the thirty-six patients was 12.5 ± 3.6 years. Twenty lesions were located in the femur; eleven, in the tibia; three, in the humerus; one, in the ulna; and one, in the pelvis. A combination of the minimum bending and torsional rigidities calculated from the tomographic data provided optimal performance in differentiating between the fracture and non-fracture groups (100% sensitivity and 94% specificity). In contrast, plain radiographic criteria demonstrated 28% to 83% sensitivity and 6% to 78% specificity.

Conclusions: The combination of bending and torsional rigidity measured noninvasively with quantitative computed tomography was more accurate (97%) for predicting pathologic fracture through benign bone lesions in children than were standard radiographic criteria (42% to 61% accuracy). We believe that this method can provide accurate objective criteria for planning treatment of benign bone lesions and monitoring treatment response.

Level of Evidence: Therapeutic Level III. See Instructions to Authors for a complete description of levels of evidence.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    PA - Thomas Jefferson University
    LA - Ochsner Health System
    CA - UCLA/OH Department of Orthopaedic Surgery