0
Workshop Articles   |    
Histology and Pathology of the Human Intervertebral Disc
Sally Roberts, PhD; Helena Evans, BSc; Jayesh Trivedi, MCh(Orth), FRCS, FRCS(Tr&Orth); Janis Menage, HND
View Disclosures and Other Information
Note: The authors are grateful to Mrs. Lynn Murphy for support.
In support of their research for or preparation of this manuscript, one or more of the authors received grants or outside funding from the European Union research project EURODISC QLK6-CT-2002-02582. None of the authors received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other charitable or nonprofit organization with which the authors are affiliated or associated.

The Journal of Bone and Joint Surgery, Incorporated
J Bone Joint Surg Am, 2006 Apr 01;88(suppl 2):10-14. doi: 10.2106/JBJS.F.00019
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

The intervertebral disc is a highly organized matrix laid down by relatively few cells in a specific manner. The central gelatinous nucleus pulposus is contained within the more collagenous anulus fibrosus laterally and the cartilage end plates inferiorly and superiorly. The anulus consists of concentric rings or lamellae, with fibers in the outer lamellae continuing into the longitudinal ligaments and vertebral bodies. This arrangement allows the discs to facilitate movement and flexibility within what would be an otherwise rigid spine. At birth, the human disc has some vascular supply within both the cartilage end plates and the anulus fibrosus, but these vessels soon recede, leaving the disc with little direct blood supply in the healthy adult. With increasing age, water is lost from the matrix, and the proteoglycan content also changes and diminishes. The disc—particularly the nucleus—becomes less gelatinous and more fibrous, and cracks and fissures eventually form. More blood vessels begin to grow into the disc from the outer areas of the anulus. There is an increase in cell proliferation and formation of cell clusters as well as an increase in cell death. The cartilage end plate undergoes thinning, altered cell density, formation of fissures, and sclerosis of the subchondral bone. These changes are similar to those seen in degenerative disc disease, causing discussion as to whether aging and degeneration are separate processes or the same process occurring over a different timescale. Additional disorders involving the intervertebral disc can demonstrate other changes in morphology. Discs from patients with spinal deformities such as scoliosis have ectopic calcification in the cartilage end plate and sometimes in the disc itself. Cells in these discs and cells from patients with spondylolisthesis have been found to have very long cell processes. Cells in herniated discs appear to have a higher degree of cellular senescence than cells in nonherniated discs and produce a greater abundance of matrix metalloproteinases. The role that abnormalities play in the etiopathogenesis of different disorders is not always clear. Disorders may be caused by a genetic predisposition or a tissue response to an insult or altered mechanical environment. Whatever the initial cause, a change in the morphology of the tissue is likely to alter the physiologic and mechanical functioning of the tissue.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    12/31/2013
    S. Carolina - Department of Orthopaedic Surgery Medical Univerity of South Carlonina
    01/22/2014
    Pennsylvania - Penn State Milton S. Hershey Medical Center
    11/15/2013
    Louisiana - Ochsner Health System
    03/05/2014
    Oklahoma - The University of Oklahoma