Workshop Articles   |    
Potential Biologic Therapies for the Intervertebral Disc
Christopher Evans, PhD, DSc
View Disclosures and Other Information
The author did not receive grants or outside funding in support of his research for or preparation of this manuscript. The author received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity (Dr. Evans is on the scientific advisory board of TissueGene Inc. and Orthogen AG). No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other charitable or nonprofit organization with which the author is affiliated or associated.

The Journal of Bone and Joint Surgery, Incorporated
J Bone Joint Surg Am, 2006 Apr 01;88(suppl 2):95-98. doi: 10.2106/JBJS.E.01328
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Biology offers several strategies for restoring the degenerating disc, including the use of recombinant or natural proteins that increase matrix accumulation and assembly, enhance the number of disc cells, or in other ways lead to restoration of the native healthy disc. Recombinant bone morphogenetic protein-7 (osteogenic protein-1) shows promise in this regard. Other growth factors, as well as cytokine antagonists such as the interleukin-1 receptor antagonist, are also good candidates. Because disc degeneration is a chronic, progressive disorder occurring over many years, it is likely that growth factors and other therapeutic proteins will need to be present in the disc for extended periods of time. The intradiscal injection of recombinant or natural proteins is unlikely to fulfill this requirement. In this scenario, the delivery of genes that encode the protein in question may provide a better delivery system. Kang and associates have pioneered this strategy, demonstrating the responsiveness of disc cells to in situ genetic modification.

The success of protein and gene therapy requires the presence of an adequate number of responding cells. Disc degeneration is accompanied by a decline in cellularity. Restoring cell numbers could be achieved by either stimulating the division and inhibiting the death of endogenous cells or by introducing new cells into the disc. The latter strategy may be more successful, especially if the endogenous cells of a degenerating disc are unresponsive or otherwise abnormal. When pursuing this strategy, there are several important reasons why it is better to introduce progenitor cells than to attempt to harvest and reintroduce mature disc cells. Progenitor cells of the mesenchymal lineage, available from bone marrow, fat, and other convenient sources, could be useful. However, although the presumption exists that these types of cells can differentiate into disc cells, this has never been demonstrated. One impediment to confirming differentiation into a disc cell is our inability to identify these cells; there are no robust molecular, biochemical, or biologic markers. The serious study of disc-cell biology at this level would be most rewarding.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    S. Carolina - Department of Orthopaedic Surgery Medical Univerity of South Carlonina
    Oklahoma - The University of Oklahoma
    California - UCLA/OH Department of Orthopaedic Surgery
    Pennsylvania - Penn State Milton S. Hershey Medical Center