0
Scientific Articles   |    
Position of Hip Resurfacing Component Affects Strain and Resistance to Fracture in the Femoral Neck
Thomas Parker Vail, MD1; Richard R. Glisson, BS2; David E. Dominguez, MD2; Kenichi Kitaoka, MD, PhD2; Danielle Ottaviano, MEng2
1 Department of Orthopaedic Surgery, University of California at San Francisco, 500 Parnassus Avenue, San Francisco, CA 94143
2 Division of Orthopaedic Surgery, Duke University Medical Center, P.O. Box 3093, Durham, NC 27710
View Disclosures and Other Information
Disclosure: In support of their research for or preparation of this work, one or more of the authors received, in any one year, outside funding or grants in excess of $10,000 from DePuy, Inc. In addition, one or more of the authors or a member of his or her immediate family received, in any one year, payments or other benefits of less than $10,000 or a commitment or agreement to provide such benefits from a commercial entity (DePuy, Inc.). Also, a commercial entity (DePuy, Inc.) paid or directed in any one year, or agreed to pay or direct, benefits in excess of $10,000 to a research fund, foundation, division, center, clinical practice, or other charitable or nonprofit organization with which one or more of the authors, or a member of his or her immediate family, is affiliated or associated.
Investigation performed at the Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, and the Division of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina

The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2008 Sep 01;90(9):1951-1960. doi: 10.2106/JBJS.F.00788
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Background: Retrieval studies have suggested that the cause of femoral implant failure after metal-on-metal hip resurfacing is multifactorial. Both varus positioning of the femoral component and notching of the superior part of the femoral neck have been associated with femoral component failure. The hypotheses of this study were that placement of a femoral resurfacing component alters femoral neck loading and that the cortical strain pattern reflecting this loading is directly related to the spatial orientation of the resurfacing component. An additional hypothesis was that notching of the superior part of the neck during implantation results in a decreased resistance to neck fracture under axial loading.

Methods: Varus, anteverted, retroverted, and anatomic positions of the femoral component were tested in sixty-four cadaveric femora. Simulated stance-phase loading was applied, and the shear strain on the femoral neck cortex was quantified with use of a photoelastic method. Preimplantation and postimplantation strain levels were compared over the entire neck region with use of generalized estimating equations. The influence of anteversion and retroversion of the component and notching of the superior part of the neck on the neck strength were evaluated.

Results: Placement of the implant in 10° of varus alignment relative to anatomic positioning increased strain on the superior aspect of the neck by 19% to 23% compared with intact femora. Anteverted and retroverted placement of the implant produced elevated strain in the anterior-inferior and posterior-inferior aspects of the neck, respectively. Placement of the component stem in alignment with the anatomic neck axis decreased neck cortical strain 6% to 19% compared with intact femora. Notching of the superior aspect of the neck decreased neck strength by 21%.

Conclusions: Relatively small deviations from anatomic alignment of a resurfacing hip component result in marked localized increases in loading of the femoral neck under conditions approximating single-limb stance. Neutral positioning of the femoral component results in localized strain reduction. Notching of the superior aspect of the femoral neck significantly reduces the resistance to fracture (p = 0.008).

Clinical Relevance: The implantation-related changes observed in this analysis might be used to model the initial loading conditions in the femoral neck after resurfacing and may serve to validate finite element analysis predictions and clinical observations.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Hip
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    04/16/2014
    Ohio - OhioHealth Research and Innovation Institute (OHRI)
    03/19/2014
    Virginia - VIRGINIA COMMONWEALTH UNIVERSITY MEDICAL CENTER
    03/19/2014
    Massachusetts - The University of Massachusetts Medical School