Tribological and Metal Ion Issues   |    
Characterization of the Running-in Period in Total Hip Resurfacing Arthroplasty: An in Vivo and in Vitro Metal Ion Analysis
Christian Heisel, MD, PhD1; Nikolaus Streich, MD1; Michael Krachler, PhD2; Eike Jakubowitz, MSc1; J. Philippe Kretzer, MSc1
1 Laboratory of Biomechanics and Implant Research, Department of Orthopaedics, University of Heidelberg, Schlierbacher Landstrasse 200A, 69117 Heidelberg, Germany. E-mail address for C. Heisel: christian.heisel@ok.uni-heidelberg.de
2 Institute for Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
View Disclosures and Other Information
Disclosure: In support of their research for or preparation of this work, one or more of the authors received, in any one year, outside funding or grants in excess of $10,000 from DePuy Orthopaedics (Germany). Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, division, center, clinical practice, or other charitable or nonprofit organization with which the authors, or a member of their immediate families, are affiliated or associated.

The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2008 Aug 01;90(Supplement 3):125-133. doi: 10.2106/JBJS.H.00437
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Background: Metal-on-metal total hip resurfacing arthroplasty is increasingly being performed in young and active patients. Preclinical in vitro testing of implants is usually performed with use of hip simulators, and the serum metal ion concentration is determined for the purpose of monitoring the patients. The goal of this study was to characterize the early running-in period in vivo and in vitro by characterizing metal ion levels.

Methods: A well-functioning total hip resurfacing prosthesis was implanted in fifteen consecutive patients, and the serum metal ion concentrations in these patients were then determined preoperatively and at intervals during the first postoperative year (at one, six, twelve, twenty-four, and fifty-two weeks). The number of walking cycles was measured with use of a computerized accelerometer in order to compare walking cycles to hip simulator cycles. In vitro, five similar components were investigated for 3 million cycles with use of a hip simulator. Serum samples were obtained at different time points, and wear was measured by quantifying wear particles and ions in the samples. All patient and simulation serum samples were analyzed with use of inductively coupled plasma-mass spectrometry. One simulator implant was investigated with use of scanning electron microscopy.

Results: The serum chromium and cobalt levels of the patients continuously increased during the first six months and showed an insignificant decrease thereafter. The molybdenum concentration was unchanged compared with preoperative values. In contrast, the simulator measurements showed a different wear pattern with a high-wear running-in period and a low-wear steady-state phase. The running-in period was delayed by 300,000 cycles and lasted up to 1 million cycles. Scanning electron microscopic analysis showed a carbon-rich protein film predominantly in the early phases of simulation. Scratches were detected originating from pits filled with aluminum oxide and silicon oxide and from pulled-out carbides that were causing third-body wear.

Conclusions: The simulator study allowed an exact characterization of the running-in period and showed a delayed onset of running-in wear. In contrast, the clinical data showed a slow increase in measured ion concentrations. These different wear patterns are probably due to the effects of distribution, accumulation, and excretion of particles and ions in vivo.

Level of Evidence: Therapeutic Level IV. See Instructions to Authors for a complete description of levels of evidence.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    Pennsylvania - Penn State Milton S. Hershey Medical Center
    Louisiana - Ochsner Health System
    Ohio - OhioHealth Research and Innovation Institute (OHRI)