0
Scientific Articles   |    
The Role of Nitric Oxide Synthase and Heme Oxygenase in the Protective Effect of Hypothermia in Ischemia-Reperfusion Injury
Russell Ward, MD1; Nicholas Souder, MD1; Daniel Stahl, MD1; Felicia Hunter, BS1; Robert Probe, MD1; Christopher Chaput, MD1; Ed Childs, MD1
1 Departments of Orthopaedic Surgery (R.W., N.S., D.S., R.P., and C.C.) and Surgery (F.H. and E.C.), Scott and White Memorial Hospital, 2401 South 31st Street, Temple, TX 76508. E-mail address for N. Souder: nsouder@swmail.sw.org
View Disclosures and Other Information
Disclosure: In support of their research for or preparation of this work, one or more of the authors received, in any one year, outside funding or grants in excess of $10,000 from the Foundation for Orthopaedic Trauma and the Orthopaedic Trauma Association. Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, division, center, clinical practice, or other charitable or nonprofit organization with which the authors, or a member of their immediate families, are affiliated or associated.
Investigation performed at Scott and White Memorial Hospital and Texas A&M Health Sciences Center, Temple, Texas

The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2009 Nov 01;91(11):2637-2645. doi: 10.2106/JBJS.H.01324
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Background: Ischemia-reperfusion injury plays an important role in limb salvage following limb ischemia. The purpose of the present study was to evaluate the effect of local hypothermia and chemical modulators on microvascular permeability following ischemia-reperfusion injury in skeletal muscle.

Methods: Sprague-Dawley rats were randomized into nine groups. Postcapillary venules of the extensor digitorum longus muscle were visualized with use of intravital microscopy. Following an intravenous bolus of fluorescein isothiocyanate-labeled albumin, the intravascular and extravascular space was examined for leak. Rats in the sham group underwent a one-hour mock ischemic period without the application of a femoral artery tourniquet, followed by one hour of mock reperfusion. The treatment groups (n = 5 in each group) had the tourniquet applied for one hour, followed by one hour of reperfusion at 10°C (cold) alone, at 10°C with nitric oxide synthase inhibitor, at 10°C with heme oxygenase inhibitor, at 10°C with a combination of inhibitors, at 34°C (warm) alone, at 34°C with a heme oxygenase inducer, at 34°C with a nitric oxide synthase inducer, or at 34°C with a combination of inducers.

Results: Rats in the sham group did not show a significant increase in microvascular permeability. Rats in the warm ischemia/reperfusion group displayed significant increases in microvascular permeability, as did the rats that received inhibitors of heme oxygenase and nitric oxide synthase at 10°C. No significant increase in microvascular permeability was observed in the animals in the cold ischemia/reperfusion group or in animals that received inducers of heme oxygenase and nitric oxide synthase at 34°C.

Conclusions: Local hypothermia protects skeletal muscle from increased microvascular permeability following ischemia-reperfusion injury. This protective effect is also seen with the induction of the nitric oxide synthase and heme oxygenase systems at physiologic temperature. We also have shown that the protective effects of hypothermia are blocked by giving heme oxygenase and nitric oxide synthase inhibitors while keeping the muscle hypothermic. These findings demonstrate that heme oxygenase and nitric oxide synthase play a combined role in ischemia-reperfusion injury, suggesting possible pathways for clinical intervention to modulate injury seen following trauma, tourniquet use, vascular surgery, and microvascular surgery.

Clinical Relevance: The present study provides evidence for the use of local hypothermia following ischemia-reperfusion-related tissue injury and provides biochemical insight for future pharmacologic intervention.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    11/15/2013
    LA - Ochsner Health System
    03/19/2014
    MA - The University of Massachusetts Medical School
    04/16/2014
    GA - Choice Care Occupational Medicine & Orthopaedics