Scientific Articles   |    
Effect of Radiofrequency Energy on Glenohumeral Fluid Temperature During Shoulder Arthroscopy
Christopher R. Good, MD1; Michael K. Shindle, MD2; Matthew H. Griffith, MD2; Tony Wanich, MD2; Russell F. Warren, MD2
1 Virginia Spine Institute, 1831 Wiehle Avenue, Reston, VA 20190
2 The Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for M.K. Shindle: shindlem@hss.edu
View Disclosures and Other Information
Disclosure: The authors did not receive any outside funding or grants in support of their research for or preparation of this work. Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, division, center, clinical practice, or other charitable or nonprofit organization with which the authors, or a member of their immediate families, are affiliated or associated.
Investigation performed at the Department of Orthopedic Surgery, Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, NY

The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2009 Feb 01;91(2):429-434. doi: 10.2106/JBJS.G.01261
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case


Background: Reports of glenohumeral chondrolysis following arthroscopy have raised concern about the deleterious effects that thermal devices may have on articular cartilage. The purpose of this study was to investigate the effects of flow and duration of treatment with a thermal device on temperatures within cadaveric glenohumeral joint specimens. It was hypothesized that the use of a thermal device during surgery increases the temperature of fluid within the joint to >45°C, which has been shown to cause chondrocyte death.

Methods: Temperature was measured at four locations within ten cadaver shoulder joints. Eight heating trials were performed on each cadaver shoulder to test three variables: the method of heating (continuous or intermittent), the fluid-pump flow rate (no flow, 50% flow, or 100% flow), and the location of the radiofrequency probe (the radiofrequency energy was either applied directly to anterior capsular tissue in a paintbrush pattern or held adjacent to the glenoid without tissue contact).

Results: Temperatures of >45°C occurred in every trial. The average maximum temperatures in all no-flow conditions were significantly higher than those in the trials with flow. Higher temperatures were measured by the anterior probe in all trials. When the heating had been applied adjacent to the glenoid, without tissue contact, the time needed to cool to a safe temperature was significantly longer in the no-flow states (average, 140.5 seconds) than it was in the 50% flow states (average, 12.5 seconds) or the 100% flow states (average, 8.5 seconds).

Conclusions: Use of a thermal probe during arthroscopy may cause joint fluid temperatures to reach levels high enough to cause chondrocyte death. Maintaining adequate fluid-pump flow rates may help to lower joint fluid temperatures and protect articular cartilage.

Clinical Relevance: The use of radiofrequency devices according to the manufacturer's recommendations in situations similar to clinical scenarios can result in exposure of chondrocytes to temperatures high enough to cause their death (>45°C). While this complication is rare, this study emphasizes that care must be taken when using these devices; precautions include minimization of direct chondrocyte exposure and maintenance of adequate flow rates.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    Georgia - Choice Care Occupational Medicine & Orthopaedics
    Louisiana - Ochsner Health System
    LA - Ochsner Health System
    NY - Icahn School of Medicine at Mount Sinai