0
Evidence-Based Orthopaedics   |    
Autologous Chondrocyte ImplantationA Systematic Review
Joshua D. Harris, MD1; Robert A. Siston, PhD2; Xueliang Pan, PhD3; David C. Flanigan, MD1
1 Division of Sports Medicine Cartilage Repair Center, Department of Orthopaedics, The Ohio State University Sports Medicine Center, 2050 Kenny Road, Suite 3100, Columbus, OH 43221-3502
2 Department of Mechanical Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210
3 Center for Biostatistics, The Ohio State University, 2012 Kenny Road, Columbus, OH 43221
View Disclosures and Other Information
Disclosure: The authors did not receive any outside funding or grants in support of their research for or preparation of this work. Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity.

Investigation performed at the Sports Medicine Center, The Ohio State University, Columbus, Ohio

Copyright © 2010 by The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2010 Sep 15;92(12):2220-2233. doi: 10.2106/JBJS.J.00049
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case

Abstract

Background: 

The purpose of the present study was to determine (1) whether the current literature supports the choice of using autologous chondrocyte implantation over other cartilage procedures with regard to clinical outcome, magnetic resonance imaging, arthroscopic assessment, and durability of treatment, (2) whether the current literature supports the use of a specific generation of autologous chondrocyte implantation, and (3) whether there are patient-specific and defect-specific factors that influence outcomes after autologous chondrocyte implantation in comparison with other cartilage repair or restoration procedures.

Methods: 

We conducted a systematic review of multiple databases in which we evaluated Level-I and II studies comparing autologous chondrocyte implantation with another cartilage repair or restoration technique as well as comparative intergenerational studies of autologous chondrocyte implantation. The methodological quality of studies was evaluated with use of Delphi list and modified Coleman methodology scores. Effect size analysis was performed for all outcome measures.

Results: 

Thirteen studies (917 subjects) were included. Study methodological quality improved with later publication dates. The mean modified Coleman methodology score was 54 (of 100). Patients underwent autologous chondrocyte implantation (n = 604), microfracture (n = 271), or osteochondral autograft (n = 42). All surgical techniques demonstrated improvement in comparison with the preoperative status. Three of seven studies showed better clinical outcomes after autologous chondrocyte implantation in comparison with microfracture after one to three years of follow-up, whereas one study showed better outcomes two years after microfracture and three other studies showed no difference in these treatments after one to five years. Clinical outcomes after microfracture deteriorated after eighteen to twenty-four months (in three of seven studies). Autologous chondrocyte implantation and osteochondral autograft demonstrated equivalent short-term clinical outcomes, although there was more rapid improvement after osteochondral autograft (two studies). Although outcomes were equivalent between first and second-generation autologous chondrocyte implantation and between open and arthroscopic autologous chondrocyte implantation, complication rates were higher with open, periosteal-cover, first-generation autologous chondrocyte implantation (four studies). Younger patients with a shorter preoperative duration of symptoms and fewer prior surgical procedures had the best outcomes after both autologous chondrocyte implantation and microfracture. A defect size of >4 cm2 was the only factor predictive of better outcomes when autologous chondrocyte implantation was compared with a non-autologous chondrocyte implantation surgical technique.

Conclusions: 

Cartilage repair or restoration in the knee provides short-term success with microfracture, autologous chondrocyte implantation, or osteochondral autograft. There are patient-specific and defect-specific factors that influence clinical outcomes.

Level of Evidence: 

Therapeutic Level II. See Instructions to Authors for a complete description of levels of evidence.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

     
    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org

    References

    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe





    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Quantitative t2 mapping evaluates the repaired articular cartilage. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2014;36(1):86-91.
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    01/22/2014
    Pennsylvania - Penn State Milton S. Hershey Medical Center
    02/05/2014
    Oregon - The Center - Orthopedic and Neurosurgical Care and Research
    01/08/2014
    Pennsylvania - Penn State Milton S. Hershey Medical Center