Scientific Articles   |    
Improvement of Flexor Tendon Reconstruction with Carbodiimide-Derivatized Hyaluronic Acid and Gelatin-Modified Intrasynovial AllograftsStudy of a Primary Repair Failure Model
Chunfeng Zhao, MD1; Yu-Long Sun, PhD1; Jun Ikeda, MD, PhD1; Ramona L. Kirk, BS1; Andrew R. Thoreson, MS1; Steven L. Moran, MD1; Kai-Nan An, PhD1; Peter C. Amadio, MD1
1 Biomechanics Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905. E-mail address for C. Zhao: zhaoc@mayo.edu
View Disclosures and Other Information
Disclosure: In support of their research for or preparation of this work, one or more of the authors received, in any one year, outside funding or grants in excess of $10,000 from the Musculoskeletal Transplant Foundation (MTF). Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity.

Investigation performed at the Biomechanics Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota

Copyright © 2010 by The Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2010 Dec 01;92(17):2817-2828. doi: 10.2106/JBJS.I.01148
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case



Tendon grafts play an important role in flexor tendon reconstruction. This study was an investigation of the effects of surface modification of allograft intrasynovial tendons with carbodiimide-derivatized hyaluronic acid and gelatin in an in vivo canine model. To mimic the actual clinical situation, a novel and clinically relevant model of a failed primary flexor tendon repair was used to evaluate the flexor tendon grafts.


Twenty-eight flexor digitorum profundus tendons from the second and fifth digits of fourteen dogs were lacerated and repaired in zone II in a first-surgery phase. The dogs were allowed free active motion postoperatively. In a second phase, six weeks later, the tendons were reconstructed with use of a flexor digitorum profundus allograft. In each dog, one graft was treated with carbodiimide-derivatized hyaluronic acid and gelatin (the CHG group) and the other was treated with saline solution, as a control. The dogs were restricted from free active motion, but daily therapy was performed beginning on postoperative day 5 and continued until six weeks after the operation, when the animals were killed. The outcomes were evaluated on the basis of digit work of flexion, gliding resistance, healing at the distal attachment, graft cell viability, histological findings, and findings on scanning electron microscopy.


In the first phase, all twenty-eight repaired tendons ruptured, with scar and adhesion formation in the repair site. Six weeks after allograft reconstruction, the mean work of flexion was 0.37 and 0.94 N-mm/degree in the CHG group and the saline-solution control group, respectively; these values were significantly different (p < 0.05). The gliding resistance in the CHG group was also significantly less than that in the saline-solution control group (0.18 versus 0.28 N) (p < 0.05), but no difference between groups was observed with regard to the distal tendon-bone pullout strength. Histological analysis showed that tenocytes in the host tendon proliferated and migrated toward the acellular allograft.


This primary repair failure model was reproducible and reliable, with a uniform failure pattern, and provides an appropriate and clinically relevant animal model with which to study flexor tendon reconstruction. The surface modification of allografts with carbodiimide-derivatized hyaluronic acid and gelatin improved digital function and tendon gliding ability.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    CA - Mercy Medical Group
    WY - Memorial Hospital of Sweetwater County
    PA - Thomas Jefferson University
    CA - UCLA/OH Department of Orthopaedic Surgery