Scientific Articles   |    
Misalignment of Total Ankle Components Can Induce High Joint Contact Pressures
N. Espinosa, MD1; M. Walti, MSc1; P. Favre, MSc1; J.G. Snedeker, PhD1
1 Department of Orthopedics, Balgrist Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland. E-mail address for J.G. Snedeker: jsnedeker@research.balgrist.ch
View Disclosures and Other Information
Disclosure: The authors did not receive any outside funding or grants in support of their research for or preparation of this work. Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity.

Investigation performed at the Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland

Copyright ©2010 American Society for Journal of Bone and Joint Surgery, Inc.
J Bone Joint Surg Am, 2010 May 01;92(5):1179-1187. doi: 10.2106/JBJS.I.00287
5 Recommendations (Recommend) | 3 Comments | Saved by 3 Users Save Case



A major cause of the limited longevity of total ankle replacements is premature polyethylene component wear, which can be induced by high joint contact pressures. We implemented a computational model to parametrically explore the hypothesis that intercomponent positioning deviating from the manufacturer's recommendations can result in pressure distributions that may predispose to wear of the polyethylene insert. We also investigated the hypothesis that a modern mobile-bearing design may be able to better compensate for imposed misalignments compared with an early two-component design.


Two finite element models of total ankle replacement prostheses were built to quantify peak and average contact pressures on the polyethylene insert surfaces. Models were validated by biomechanical testing of the two implant designs with use of pressure-sensitive film. The validated models were configured to replicate three potential misalignments with the most clinical relevance: version of the tibial component, version of the talar component, and relative component rotation of the two-component design. The misalignments were simulated with use of the computer model with physiologically relevant boundary loads.


With use of the manufacturer's guidelines for positioning of the two-component design, the predicted average joint contact pressures exceeded the yield stress of polyethylene (18 to 20 MPa). Pressure magnitudes increased as implant alignment was systematically deviated from this reference position. The three-component design showed lower-magnitude contact pressures in the standard position (<10 MPa) and was generally less sensitive to misalignment. Both implant systems were sensitive to version misalignment.


In the tested implants, a highly congruent mobile-bearing total ankle replacement design yields more evenly distributed and lower-magnitude joint contact pressures than a less congruent design. Although the mobile-bearing implant reduced susceptibility to aberrant joint contact characteristics that were induced by misalignment, predicted average contact stresses reached the yield stress of polyethylene for imposed version misalignments of >5°.

Clinical Relevance: 

To improve long-term outcome, this study supports the hypothesis that proper positioning of the tested total ankle replacement implants is likely an important requirement, especially in version.

Figures in this Article
    Sign In to Your Personal ProfileSign In To Access Full Content
    Not a Subscriber?
    Get online access for 30 days for $35
    New to JBJS?
    Sign up for a full subscription to both the print and online editions
    Register for a FREE limited account to get full access to all CME activities, to comment on public articles, or to sign up for alerts.
    Register for a FREE limited account to get full access to all CME activities
    Have a subscription to the print edition?
    Current subscribers to The Journal of Bone & Joint Surgery in either the print or quarterly DVD formats receive free online access to JBJS.org.
    Forgot your password?
    Enter your username and email address. We'll send you a reminder to the email address on record.

    Forgot your username or need assistance? Please contact customer service at subs@jbjs.org. If your access is provided
    by your institution, please contact you librarian or administrator for username and password information. Institutional
    administrators, to reset your institution's master username or password, please contact subs@jbjs.org


    Accreditation Statement
    These activities have been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Academy of Orthopaedic Surgeons and The Journal of Bone and Joint Surgery, Inc. The American Academy of Orthopaedic Surgeons is accredited by the ACCME to provide continuing medical education for physicians.
    CME Activities Associated with This Article
    Submit a Comment
    Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
    Comments are moderated and will appear on the site at the discretion of JBJS editorial staff.

    * = Required Field
    (if multiple authors, separate names by comma)
    Example: John Doe

    Related Content
    The Journal of Bone & Joint Surgery
    JBJS Case Connector
    Topic Collections
    Related Audio and Videos
    PubMed Articles
    Clinical Trials
    Readers of This Also Read...
    JBJS Jobs
    New York - Icahn School of Medicine at Mount Sinai
    S. Carolina - Department of Orthopaedic Surgery Medical Univerity of South Carlonina