Surgical Treatment of Femoroacetabular Impingement: Evaluation of the Effect of the Size of the Resection
Rodrigo M. Mardones, MD; Carlos Gonzalez, MS; Qingshan Chen, MS; Mark Zobitz, MS; Kenton R. Kaufman, PhD; Robert T. Trousdale, MD

Abstract

Background: In patients with symptomatic hip impingement, surgical resection of the femoral head-neck junction may improve the range of motion and relieve pain. A risk of this procedure is fracture. We evaluated the amount of resection of the anterolateral aspect of the femoral head-neck junction that can be done safely.

Methods: Cadaveric proximal femoral specimens (fifteen matched pairs) were divided into three groups: 10%, 30%, or 50% of the diameter of one femoral neck was removed, and the contralateral femoral neck was left intact to serve as the control. A compressive load was applied directly to the femoral head. Peak load, stiffness, and energy to fracture were compared among the groups.

Results: The energy to fracture differed significantly (p = 0.0015) among the 10%, 30%, and 50% resection groups. The peak load after the 50% resection was significantly less (p = 0.0025) than that after the 10% or 30% resection. With the numbers available, there was no significant difference in peak load between the 10% and 30% resections.

Conclusions: Resection of up to 30% of the anterolateral quadrant of the head-neck junction did not significantly alter the load-bearing capacity of the proximal part of the femur. However, a 30% resection significantly decreased the amount of energy required to produce a fracture. Thirty percent should be considered to be the greatest feasible amount of resection because of the change in the pattern of the femoral head-neck response to axial loads that we observed.

Footnotes

  • A commentary is available with the electronic versions of this article, on our web site (www.jbjs.org) and on our quarterly CD-ROM (call our subscription department, at 781-449-9780, to order the CD-ROM).

  • The authors did not receive grants or outside funding in support of their research or preparation of this manuscript. They did not receive payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other charitable or nonprofit organization with which the authors are affiliated or associated.

  • Investigation performed at the Department of Orthopedic Surgery and Orthopedic Biomechanics Laboratory, Mayo Clinic, Rochester, Minnesota


Enter your JBJS login information below.
Please note that your username is the email address you provided when you registered.

List of OpenAthens registered sites, including contact details.